检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ls/{pool_name}/nodes/batch-reboot { "nodeNames" : [ "os-node-created-vrvrq", "os-node-created-4jczv" ] } 响应示例 状态码: 200 OK。 { "job_id" :
限制用户使用公共资源池 本章节介绍如何控制ModelArts用户权限,限制用户使用ModelArts公共资源池的资源创建训练作业、创建开发环境实例,部署推理服务等。 场景介绍 对于ModelArts专属资源池的用户,不允许使用公共资源池创建训练作业、创建Notebook实例或者部
TP×PP×CP)的值进行整除。 Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
TP×PP×CP)的值进行整除。 Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
TP×PP×CP)的值进行整除。 Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
Manifest文件可以由用户、第三方工具或ModelArts数据标注生成,其文件名没有特殊要求,可以为任意合法文件名。为了ModelArts系统内部使用方便,ModelArts数据标注功能生成的文件名由如下字符串组成:“DatasetName-VersionName.manifes
TP×PP×CP)的值进行整除。 Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断
read(img_path), np.uint8), 1) 在MXNet环境下使用torch包,请您尝试如下方法先进行导包: import os os.sysytem('pip install torch') import torch 父主题: OBS操作相关故障
TP×PP×CP)的值进行整除。 Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
TP×PP×CP)的值进行整除。 Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断
在“数据处理”页面,单击“创建”进入“创建数据处理”页面。 在创建数据处理页面,填写相关算法参数。 填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。
强化学习引擎为learner,worker TensorFlow为ps,worker “MA_TASK_NAME=worker” MA_NUM_HOSTS 实例数。系统自动从资源参数的“实例数”中读取。 “MA_NUM_HOSTS=4” VC_TASK_INDEX 当前容器索引,容器从0开始编号。单机训练
# 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url", data=obs_data)
nci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/
InternVL2基于DevServer适配PyTorch NPU训练指导(6.3.909) 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展InternVL2-26B和InternVL2-8B模型的训练过程,
', type=str, default=os.path.join(file_dir, 'input_dir')) parser.add_argument('--output_dir', type=str, default=os.path.join(file_dir, 'output_dir'))
用率或NPU利用率,并根据这段时间内的GPU利用率或NPU利用率的方差和中位数来判断资源使用率是否有变化。如果没有变化,则判定作业卡死。 系统预置了卡死检测的环境变量“MA_HANG_DETECT_TIME=30”,表示30分钟内进程IO无变化则判定作业卡死。如果需要修改卡死检测
在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度。
处理方法 将requirements.txt中的Unidecode改为unidecode。 建议与总结 您可以在训练代码里添加一行: os.system('pip list') 然后运行训练作业,查看日志中是否有所需要的模块。 父主题: 业务代码问题
"Node", "apiVersion" : "v2", "metadata" : { "name" : "os-node-created-zlncn", "creationTimestamp" : "2022-09-16T05:32:44Z"