检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为例,修改多机config.yaml模板中的${command}命令如下。多机启动需要在每个节点上执行。MASTER_ADDR为当前ssh远程主机的IP地址(私网IP)。 # 多机执行命令为:sh scripts/llama2/0_pl_pretrain_70b.sh <MASTER_ADDR=xx.xx
LLaVA模型基于Lite Server适配PyTorch NPU预训练指导(6.3.912) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。
Open-Sora-Plan1.0基于DevServer适配PyTorch NPU训练推理指导(6.3.907) 本文档主要介绍如何在ModelArts Lite DevServer上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora-Plan1
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,以基于DeepSpeed的Qwen-VL模型为例,为用户提供了多模态理解模型在ModelArts Standard上的全量微调和LoRA微调方案。 本方案目前仅适用于部分企业客户,
删除网络资源 功能介绍 删除指定网络资源。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v1/{project_id}/networks/{network_name}
AI Gallery简介 AI Gallery算法、镜像、模型、Workflow等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。
MaaS大模型即服务平台功能介绍 对于普通企业来说,大模型开发不仅需要强大的算力,还需要学习训练、部署的相关参数配置和规格选择等专业知识。ModelArts Studio大模型即服务平台(后续简称为MaaS服务)作为一个面向客户的大模型服务化平台,提供简单易用的模型开发工具链,支
查询网络资源列表 功能介绍 查询网络资源列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/networks 表1 路径参数
LLaVA模型基于DevServer适配PyTorch NPU推理指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。
FLUX.1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend
SD1.5&SDXL ComfyUI、WebUI、Diffusers套件适配PyTorch NPU的推理指导(6.3.912) 本文档主要介绍如何在ModelArts Lite Server环境中部署Stable Diffusion模型对应SD1.5和SDXL的ComfyUI、W
Bert基于DevServer适配MindSpore Lite推理指导(6.3.910) 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾Atlas 300I Duo推理卡计算资源,部署Bert-base-chinese模型推理的详细过程。完成本方案的部署
Yolov8基于DevServer适配MindSpore Lite推理指导(6.3.909) 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾Atlas 300I Duo推理卡计算资源,部署Yolov8 Detection模型推理的详细过程。 本方案目前仅适用于企业客户。
MaaS使用场景和使用流程 ModelArts Studio大模型即服务平台(后续简称为MaaS服务),提供了简单易用的模型开发工具链,支持大模型定制开发,让模型应用与业务系统无缝衔接,降低企业AI落地的成本与难度。 当您第一次使用MaaS服务时,可以参考快速入门使用ModelArts
构建新镜像。 基础镜像一般选用“ubuntu 18.04”的官方镜像,或者nvidia官方提供的带cuda驱动的镜像。相关镜像直接到dockerhub官网查找即可。 构建流程:安装所需的apt包、驱动,配置ma-user用户、导入conda环境、配置Notebook依赖。 推荐使用Docke
更新网络资源 功能介绍 更新指定网络资源。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PATCH /v1/{project_id}/networks/{network_name}
训练迁移快速入门案例 本篇指导是迁移的总体思路介绍,便于用户对迁移过程有一个整体的认识。如果您希望通过具体案例直接实操,请参考《主流开源大模型基于DevServer适配PyTorch NPU训练指导》。该案例以ChatGLM-6B为例,介绍如何将模型迁移至昇腾设备上训练、模型精度对齐以及性能调优。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,以基于DeepSpeed的Qwen-VL模型为例,为用户提供了多模态理解模型在ModelArts Standard上的全量微调和LoRA微调方案。 本方案目前仅适用于部分企业客户,
使用ModelArts Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。
ModelArts Standard使用流程 本章节旨在帮助您了解ModelArts Standard的基本使用方法,帮助您快速上手ModelArts服务。 面向熟悉代码编写和调测,熟悉常见AI引擎的开发者,ModelArts不仅提供了在线代码开发环境,还提供了从数据准备、模型训