检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
user/ws/tokenizers/{Model_Name}目录,用户根据自己实际规划路径修改;如Qwen2-72B。 具体步骤如下: 进入到${workdir}目录下,如:/home/ma-user/ws,创建tokenizers文件目录将权重和词表文件放置此处,以Qwen2-72B为例。
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
ndSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 若镜像使用ECS中构建新镜像(二选一)构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下:
修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下:
启动训练脚本 修改完yaml配置文件后,启动训练脚本。模型不同最少NPU卡数不同,NPU卡数建议值可参考表1。 修改启动脚本demo.sh 进入代码目录{work_dir}/llm_train/LLaMAFactory下修改启动脚本,其中{work_dir}为容器挂载路径;修改demo
修改超参值后,再启动训练脚本。Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下:
修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下:
修改超参值后,再启动训练脚本。Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下:
user/ws/tokenizers/{Model_Name}目录,用户根据自己实际规划路径修改;如Qwen2-72B。 具体步骤如下: 进入到${workdir}目录下,如:/home/ma-user/ws,创建tokenizers文件目录将权重和词表文件放置此处,以Qwen2-72B为例。
model_path”。另外pyspark模型在“customize_service.py”中可以使用“self.spark”获取SparkSession对象。 推理代码中,需要通过绝对路径读取文件。模型所在的本地路径可以通过self.model_path属性获得。 当使用TensorFlow、Caffe、MXNet时,self
修改超参值后,再启动训练脚本。Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下:
修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下:
修改超参值后,再启动训练脚本。Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下:
使用原始hf权重的tokenizer.json覆盖保存的tokenizer.json即可,如llama3-8b_lora具体过程如下: # 进入模型tokenizer目录 cd /home/ma-user/ws/tokenizers/llama3-8b/ # 替换tokenizer
使用原始hf权重的tokenizer.json覆盖保存的tokenizer.json即可,如llama3-8b_lora具体过程如下: # 进入模型tokenizer目录 cd /home/ma-user/ws/tokenizers/llama3-8b/ # 替换tokenizer
2-70B建议为4机32卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。xxx-Ascend请根据实际目录替换。
2-70B建议为4机32卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。xxx-Ascend请根据实际目录替换。
指定查询的排序顺序。可选值如下: asc:递增排序 desc:递减排序(默认值) process_parameter 否 String 图像缩略设置,同OBS缩略图设置,详见OBS缩略图设置。如:image/resize,m_lfit,h_200表示等比缩放目标缩略图并设置高度为200像素。 search_conditions
②使用原始hf权重的tokenizer.json覆盖保存的tokenizer.json即可,如llama3-8b_lora具体过程如下: # 进入模型tokenizer目录 cd /home/ma-user/ws/tokenizers/llama3-8b/ # 替换tokenizer