检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
2-70B建议为4机32卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。xxx-Ascend请根据实际目录替换。
service_predict.py # 发送请求的服务 上传精度测试代码到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传过AscendCloud-3rdLLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_eval目录下,执行如下命令安装性能测试的关依赖。 pip
2-70B建议为8机64卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。xxx-Ascend请根据实际目录替换。
修改超参值后,再启动训练脚本。Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 多机执行命令为:sh scrip
String 数据集输出位置,用于存放输出的标注信息等文件。此位置为OBS路径,格式为“/桶名称/文件路径”。例如:“/obs-bucket”。 work_path_type Integer 数据集输出路径类型。默认值为0,表示OBS桶。 workforce_descriptor WorkforceDescriptor
成功完成推理服务的部署。 部署推理服务 登录AI Gallery。 单击“模型”进入模型列表。 选择需要部署为推理服务的模型,单击模型名称进入模型详情页。 在模型详情页,选择“部署 > 推理服务”进入部署推理服务页面。 在部署推理服务页面完成参数配置。 表1 部署推理服务 参数 子参数
"dataset_id" : "gfghHSokody6AJigS5A", "import_path" : "obs://test-obs/daoLu_images/animals/", "import_type" : 0, "total_sample_count"
请参考k8s Cluster环境配置详细流程。 kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。 首先进入已创建的CCE集群控制版面中。根据图2的步骤进行操作,单击kubectl配置时,会弹出图3步骤页面。 图2 配置中心 根据图3,按步骤进行:判断是否安装
请参考k8s Cluster环境配置详细流程。 kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。 首先进入已创建的CCE集群控制版面中。根据图2的步骤进行操作,单击kubectl配置时,会弹出图3步骤页面。 图2 配置中心 根据图3,按步骤进行:判断是否安装
Gallery中已上架的资产支持下架操作。 在AI Gallery首页,选择右上角“我的Gallery”。 在“我的资产”下,查看已上架的资产。 单击资产名称,进入资产详情页。 在资产详情页,单击“下架”,在弹窗中单击“确定”。即可将资产下架。 删除镜像 当资产不使用时,支持删除,释放AI Gallery仓库的存储空间。
将下载的原始数据存放在{work_dir}/llm_train/LLaMAFactory/LLaMA-Factory/data目录下。具体步骤如下: 进入到/home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data目录下。 cd /
方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到 /home/ma-user/work/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。
方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到 /home/ma-user/work/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。
方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到 /home/ma-user/work/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。
备>数据标注”,单击“我创建的”页签可查看所有作业列表。 在标注作业列表中,选择“物体检测”或“图像分类”类型的标注作业,单击标注作业名称进入“标注作业详情”。 在“标注作业详情页”,选择“待确认”页签,查看并确认难例。 只有当智能标注任务完成后,待确认页签才会显示标注数据。否则
在ModelArts上创建训练作业。 登录ModelArts管理控制台。 在左侧导航栏中,选择“模型训练 > 训练作业”进入训练作业列表。 单击“创建训练作业”,进入创建训练作业页面,填写作业信息,创建方式参考表1,其他参数填写请参考创建训练作业。 表1 创建训练作业的创建方式(使用自定义镜像)
zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 进入benchmark_tools目录下,切换conda环境并安装依赖。
zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 进入benchmark_tools目录下,切换conda环境并安装依赖。
将下载的原始数据存放在{work_dir}/llm_train/LLaMAFactory/LLaMA-Factory/data目录下。具体步骤如下: 进入到/home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data目录下。 cd /
创建成功后,Notebook实例的状态为“运行中”,单击操作列的“打开”,访问JupyterLab。 图2 打开Notebook实例 进入JupyterLab页面后,自动打开Launcher页面,如下图所示。您可以使用开源支持的所有功能,详细操作指导可参见JupyterLab官网文档。