检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
CUDA is not enabled” 原因分析 出现该问题的可能原因如下: 新安装的包与镜像中带的CUDA版本不匹配。 处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc -V”查看目前镜像自带的CUDA版本。
otebook中权重路径;如果服务部署在生产环境中,该参数为本地模型权重路径。 --served-model-name:仅在以openai接口启动服务时需要该参数。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为服务启动脚本run_vllm
者方法 第三方pip源中的python包版本更新,导致在训练作业中安装的python包的版本可能也会发生变化。如训练作业之前无此问题,后面一直有此问题,则考虑是此原因。 处理方法 通过Notebook调试。 安装时指定版本。如:pip install xxx==1.x.x 第三方
s.json”中的参数,否则配置的参数将无法在推理过程中生效。 “inference_params.json”文件的参数请参见表4。该参数会显示在部署推理服务页面,在“高级设置”下会新增“参数设置”,基于配置的推理参数供模型使用者修改自定义镜像的部署参数。 表4 自定义推理参数说明
pseek-v2-236B-W8A8。另外,当前MoE模型的PTA图模式启动不支持multi step。 PTA图模式参数配置 如果要开启PTA图模式,请配置以下5个环境变量,并且启动服务时不要添加enforce-eager参数。 export INFER_MODE=PTA #
息写入对应的Manifest文件中。 数据集版本文件目录结构 由于数据集是基于OBS目录管理的,发布为新版本后,对应的数据集输出位置,也将基于新版本生成目录。 以图像分类为例,数据集发布后,对应OBS路径下生成,其相关文件的目录如下所示。 |-- user-specified-output-path
"manifest_path" : "/test-obs/classify/output/dataset-f9e8-gfghHSokody6AJigS5A/annotation/V003/V003.manifest", "data_path" : "/test-obs/classify/outp
ModelArts Studio大模型即服务平台已预置非量化模型与AWQ-W4A16量化模型的模型模板。 非量化模型可以支持调优、压缩、部署等操作。 量化模型仅支持部署操作。当需要获取SmoothQuant-W8A8量化模型时,则可以通过对非量化模型进行模型压缩获取。
ma2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build.sh
Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 单击左上方“创建资产”,选择“镜像”。 在“创建镜像”弹窗中配置参数,单击“创建”。 表1 创建镜像 参数名称 说明 英文名称 必填项,镜像的英文名称。 如果没有填写“中文名称”,则资产发布后,在镜像页签上会显示该“英文名称”。
如何定位Workflow运行报错 使用run模式运行工作流报错时,分析解决思路如下: 确认安装的SDK包是否是最新版本,避免出现包版本不一致问题。 检查编写的SDK代码是否符合规范,具体可参考相应的代码示例。 检查运行过程中输入的内容是否正确,格式是否与提示信息中要求的一致。 根
训练和服务部署,工作流发布至运行态后,部分运行的开关默认关闭,节点全部运行。用户可在权限管理页面打开开关,选择指定的场景进行运行。 部分运行能力支持同一个节点被定义在不同的运行场景中,但是需要用户自行保证节点之间数据依赖的正确性。另外,部分运行能力仅支持在运行态进行配置运行,不支持在开发态进行调试。
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
化,确保服务的高可用性和资源的高效利用。 ModelArts Studio大模型即服务平台支持手动扩缩容模型服务的实例数,该操作不会影响部署服务的正常运行。 约束限制 仅当模型服务处于这几个状态下才能扩缩容实例数:运行中、告警。 扩缩容实例数 登录ModelArts Studio控制台,在顶部导航栏选择目标区域。
本地数据、文件保存将"/cache"目录3.5T空间用完了。 云上训练磁盘空间一般指如下两个目录的磁盘空间: “/”根目录,是docker中配置项“base size”,默认是10G,云上统一改为50G。 “/cache”目录满了,一般是3.5T存储空间满了,具体规格的空间大小可参
otebook中权重路径;如果服务部署在生产环境中,该参数为本地模型权重路径。 --served-model-name:仅在以openai接口启动服务时需要该参数。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为服务启动脚本run_vllm
pseek-v2-236B-W8A8。另外,当前MoE模型的PTA图模式启动不支持multi step。 PTA图模式参数配置 如果要开启PTA图模式,请配置以下5个环境变量,并且启动服务时不要添加enforce-eager参数。 export INFER_MODE=PTA #
资源标签,非特权池不能指定。 network 否 NodeNetwork object 网络配置,非特权池不能指定。 extendParams 否 Map<String,String> 自定义配置参数。 "dockerBaseSize": 指定资源池节点的容器引擎空间大小。值为0时表示不限制大小。
ma2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build.sh
进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。 FASP剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。