检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Hive应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 Hive应用程序开发流程 表1 Hive应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解Hive的基本概念。 Hive应用开发常用概念 准备开发和运行环境 Hive的应用程
Spark基本原理 Spark简介 Spark是一个开源的,并行数据处理框架,能够帮助用户简单、快速的开发大数据应用,对数据进行离线处理、流式处理、交互式分析等。 Spark提供了一个快速的计算、写入及交互式查询的框架。相比于Hadoop,Spark拥有明显的性能优势。Spark
HBase应用开发流程介绍 本文档主要基于Java API对HBase进行应用开发。 开发流程中各阶段的说明如图1和表1所示。 图1 HBase应用程序开发流程 表1 HBase应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用
Spark应用开发流程介绍 Spark包含Spark Core、Spark SQL和Spark Streaming三个组件,其应用开发流程相同。 开发流程中各阶段的说明如图1和表1所示。 图1 Spark应用程序开发流程 表1 Spark应用开发的流程说明 阶段 说明 参考文档 了解基本概念
ClickHouse多租户介绍 本章节内容仅适用于MRS 3.2.0及之后版本。 ClickHouse多租户介绍 ClickHouse多租户特性通过“用户 > 租户角色 > 资源profiles管理”的模型,使用户拥有对集群资源的管理能力,目前支持内存和CPU优先级管理。多租户设计模型如下图所示:
表1中变量的介绍请参见表2。 表2 变量说明 变量 说明 jobid job的id。 vertexid 流图的顶点id。 subtasknum 子任务的总和。 attempt 尝试。 taskmanagerid 任务管理的id。 父主题: Flink常用API介绍
Spark应用开发流程介绍 Spark包含Spark Core、Spark SQL和Spark Streaming三个组件,其应用开发流程都是相同的。 开发流程中各阶段的说明如图1和表1所示。 图1 Spark应用程序开发流程 表1 Spark应用开发的流程说明 阶段 说明 参考文档
Storm对外接口介绍 Storm-HDFS采用的接口同开源社区版本保持一致,详情参见:https://github.com/apache/storm/tree/v1.2.1/external/storm-hdfs。 Storm-HBase采用的接口同开源社区版本保持一致,详情参见:https://github
Spark应用开发流程介绍 Spark应用程序开发流程 Spark包含Spark Core、Spark SQL和Spark Streaming三个组件,其应用开发流程都是相同的。 开发流程中各阶段的说明如图1和表1所示。 图1 Spark应用程序开发流程 表1 Spark应用开发的流程说明
Hue基本原理 Hue是一组WEB应用,用于和MRS大数据组件进行交互,能够帮助用户浏览HDFS,进行Hive查询,启动MapReduce任务等,它承载了与所有MRS大数据组件交互的应用。 Hue主要包括了文件浏览器和查询编辑器的功能: 文件浏览器能够允许用户直接通过界面浏览以及操作HDFS的不同目录;
Flink基本原理 Flink简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景
YARN基本原理 为了实现一个Hadoop集群的集群共享、可伸缩性和可靠性,并消除早期MapReduce框架中的JobTracker性能瓶颈,开源社区引入了统一的资源管理框架YARN。 YARN是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建
OpenTSDB HTTP API接口介绍 OpenTSDB提供了基于HTTP或HTTPS的应用程序接口。请求方式是通过向资源对应的路径发送标准的HTTP请求,请求包含GET、POST方法。它的接口与开源OpenTSDB保持一致,请参见https://opentsdb.net/d
Flink Client CLI介绍 Flink CLI详细的使用方法参考官网描述:https://ci.apache.org/projects/flink/flink-docs-release-1.7/ops/cli.html。 常用CLI Flink常用的CLI如下所示: yarn-session
ClickHouse与其他组件的关系 ClickHouse安装部署依赖ZooKeeper服务。 ClickHouse通过Flink流计算应用加工生成通用的报表数据(明细宽表),准实时写入到ClickHouse,通过Hive/Spark作业加工生成通用的报表数据(明细宽表),批量导入到ClickHouse。
Storm对外接口介绍 Storm-HDFS采用的接口同开源社区版本保持一致,详情参见:https://github.com/apache/storm/tree/v1.2.1/external/storm-hdfs。 Storm-HBase采用的接口同开源社区版本保持一致,详情参见:https://github
HDFS Java API接口介绍 HDFS完整和详细的接口可以直接参考官方网站上的描述:http://hadoop.apache.org/docs/r2.7.2/api/index.html。 HDFS常用接口 HDFS常用的Java类有以下几个。 FileSystem:是客户端应用的核心类。常用接口参见表1。
HetuEngine应用开发简介 HetuEngine简介 HetuEngine是华为自研高性能交互式SQL分析及数据虚拟化引擎。与大数据生态无缝融合,实现海量数据秒级交互式查询;支持跨源跨域统一访问,使能数据湖内、湖间、湖仓一站式SQL融合分析。 HetuEngine基本概念
Hive WebHCat接口介绍 以下示例的IP为WebHCat所在节点的业务IP,端口为安装时设置的WebHCat HTTP端口。 除“:version”、“status”、“version”、“version/hive”、“version/hadoop”以外,其他API都需要添加user
Kafka与其他组件的关系 Kafka作为一个消息发布-订阅系统,为整个大数据平台多个子系统之间数据的传递提供了高速数据流转方式。 Kafka可以实时接受来自外部的消息,并提供给在线以及离线业务进行处理。 Kafka与其他组件的具体的关系如下图所示: 图1 与其他组件关系 父主题: