检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
文本翻译插件节点:在翻译意图分支中,文本翻译插件节点负责调用华为云文本翻译API,实现从源语言到目标语言的翻译过程。插件将翻译结果返回,传递给结束节点。 大模型节点:如果用户的意图属于“其他”意图分支(如普通对话),则文本将被引导到大模型节点。
发布提示词 通过横向比较提示词效果和批量评估提示词效果,如果找到高质量的提示词,可以将这些提示词发布至“提示词模板”中。 在提示词“候选”页面,选择质量好的提示词,并单击“保存到模板库”。 图1 保存提示词至模板库 进入“Agent 开发 > 提示词工程 > 提示词模板”页面,查看发布的提示词
Agent开发平台介绍 Agent开发平台简介 Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建AI
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势
使用盘古预置NLP大模型进行文本对话 场景描述 此示例演示了如何使用盘古预置NLP大模型进行对话问答,包含两种方式:使用“能力调测”功能和调用API接口。 您将学习如何使用“能力调测”功能调试模型超参数、如何调用盘古NLP大模型API以实现智能化对话问答能力。 准备工作 请确保您有预置的
盘古预测大模型能力与规格 盘古预测大模型是面向结构化数据,通过任务理解、模型推荐、模型融合技术,构建通用的预测能力。 ModelArts Studio大模型开发平台为用户提供了多种规格的预测大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用
清洗文本类数据集 清洗文本类数据集任务前,请先完成数据导入操作,具体步骤请参见导入数据至盘古平台。 创建文本类数据集清洗任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据清洗
配比文本类数据集 数据配比是将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通文本类数据集。 创建文本类数据集配比任务 创建文本类数据集配比任务步骤如下: 登录ModelArts Studio
流通视频类数据集 数据流通是将单个数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 视频类数据集当前仅支持发布为“默认格式”。 创建视频类数据集流通任务 创建视频类数据集流通任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估
文本对话 功能介绍 基于文本对话功能,用户可以与模型进行自然而流畅的对话和交流。 URI 获取URI方式请参见请求URI。 请求参数 使用Token认证方式的请求Header参数见表1。 表1 请求Header参数(Token认证) 参数 是否必选 参数类型 描述 X-Auth-Token
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先
标注文本类数据集 创建文本类数据集标注任务 标注文本类数据集任务前,请先完成数据导入操作,具体步骤请参见导入数据至盘古平台。 创建文本类数据集标注任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
数据集发布场景介绍 数据发布介绍 ModelArts Studio大模型开发平台提供的数据发布功能涵盖数据评估、数据配比和数据流通操作,旨在通过数据质量评估和合理的比例组合,确保数据满足大模型训练的多样性、平衡性和代表性需求,促进数据的高效流通和应用。 数据发布不仅包括将数据发布为适合使用的格式
发布气象类数据集 气象类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布 > 数据流通”,单击界面右上角“创建流通任务”。 在“创建流通任务”页面
发布其他类数据集 其他类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布 > 数据流通”,单击界面右上角“创建流通任务”。 在“创建流通任务”页面
插件介绍 在Agent开发平台中,插件是大模型能力的重要扩展。通过模块化方式,插件能够为大模型提供更多专业技能和复杂任务处理能力,使其在多样化的实际场景中更加高效地满足用户需求。 通过插件接入,用户可以为应用赋予大模型本身不具备的能力。插件提供丰富的外部服务接口,当任务执行时,模型会根据提示词感知适用的插件
创建插件 创建插件的步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“插件”页签,单击右上角“创建插件”。 在“创建插件”页面,填写插件名称与插件描述