K解析新的manifest文件。 ModelArts数据管理模块在重构升级中,对未使用过数据管理的用户不可见。建议新用户将训练数据存放至OBS桶中使用。 1 2 3 4 5 6 7 8 if data_path.startswith('obs://'): if '.manifest'
类型type、属性properties,必选属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 若希望使用JSON Schema,guided_json的写法可参考outlines: Structured
类型type、属性properties,必选属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 若希望使用JSON Schema,guided_json的写法可参考outlines: Structured
ma-cli configure鉴权命令 鉴权信息说明 在虚拟机及个人PC场景,需要配置鉴权信息,目前支持用户名密码鉴权(默认)和AK/SK鉴权; 在使用账号认证时,需要指定username和password;在使用IAM用户认证时,需要指定account、username和password;
管理Lite Cluster资源池 Lite Cluster资源池续费管理 针对包年包月的Lite Cluster资源池,支持续费功能,还可以开通自动续费、修改自动续费。 在ModelArts管理控制台的左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”,进入Lite资源池列表页中操作,如下图所示。
ModelArts Standard推理服务访问公网方案 本章节提供了推理服务访问公网的方法。 应用场景 推理服务访问公网地址的场景,如: 输入图片,先进行公网OCR服务调用,然后进行NLP处理; 进行公网文件下载,然后进行分析; 分析结果回调给公网服务终端。 方案设计 从推理服
名称/文件路径”。例如:“/obs-bucket”。 work_path_type Integer 数据集输出路径类型。默认值为0,表示OBS桶。 workforce_descriptor WorkforceDescriptor object 团队标注信息。 workforce_task_count
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1 支持的模型列表所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
类型type、属性properties,必选属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 若希望使用JSON Schema,guided_json的写法可参考outlines: Structured
类型type、属性properties,必选属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1 支持的模型列表所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVid
CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.5.901) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVid
类型type、属性properties,必选属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
Wav2Lip训练基于Lite Server适配PyTorch NPU训练指导(6.3.907) 本文档主要介绍如何在ModelArts Lite的Lite Server环境中,使用NPU卡训练Wav2Lip模型。本文档中提供的Wav2Lip模型,是在原生Wav2Lip代码基础上适配后的模型,可以用于NPU芯片训练。
MiniCPM-V2.6基于Lite Server适配PyTorch NPU训练指导(6.3.912) 本文档主要介绍如何在ModelArts Lite的Server环境中,使用NPU卡对MiniCPM-V2.6进行LoRA微调及SFT微调。本文档中提供的训练脚本,是基于原生Mi
您即将访问非华为云网站,请注意账号财产安全