检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
GPU业务迁移至昇腾训练推理 基于AIGC模型的GPU推理业务迁移至昇腾指导 GPU推理业务迁移至昇腾的通用指导
安全性是华为云与您的共同责任,如图1所示。 华为云:负责云服务自身的安全,提供安全的云。华为云的安全责任在于保障其所提供的IaaS、PaaS和SaaS各类各项云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等。这不仅包括华为云基础设施和各项云服务
裸金属服务器Euler OS升级NetworkManager-config-server导致SSH链接故障解决方案 问题现象 裸金属服务器EulerOS 2.8系统下,使用yum update -y命令,导致软件NetworkManagre-config-server升级到高版本,出现SSH链接故障无法访问。
访问在线服务支持的访问通道 通过公网访问通道的方式访问在线服务 通过VPC高速访问通道的方式访问在线服务 父主题: 将AI应用部署为实时推理作业
访问在线服务支持的传输协议 使用WebSocket协议的方式访问在线服务 使用Server-Sent Events协议的方式访问在线服务 父主题: 将AI应用部署为实时推理作业
访问在线服务支持的认证方式 通过Token认证的方式访问在线服务 通过AK/SK认证的方式访问在线服务 通过APP认证的方式访问在线服务 父主题: 将AI应用部署为实时推理作业
华为云CCE集群纳管GPU裸金属服务器由于CloudInit导致纳管失败的解决方案 问题现象 创建出3台GPU裸金属服务器,使用A节点制作镜像,用于在CCE纳管裸金属服务器时,使用该镜像,但是纳管后发现服务器A纳管失败,剩下两台服务器纳管成功。 原因分析 在CCE纳管过程中,需要通过cloudinit
升级、回退、卸载os-node-agent。 导致驱动升级、故障检测、指标采集、节点运维功能异常。 高 联系华为云技术支持重装os-node-agent。 升级、回退、卸载rdma-sriov-dev-plugin。 可能影响容器内使用RDMA网卡。 高 联系华为云技术支持重装rdma-sriov-dev-plugin。
ModelArts支持的预置镜像列表 ModelArts预置镜像更新说明 ModelArts统一镜像列表 Notebook专属预置镜像列表 训练专属预置镜像列表 推理专属预置镜像列表 父主题: 制作自定义镜像用于ModelArts Standard
自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“AI应用管理 > AI应用”页面中直接部署。 支持发布至市场 将产生的模型发布至AI Gallery,共享给其他用户。 支持创建新版本
在Windows上安装配置Grafana 适用场景 本章节适用于Windows操作系统的PC。 操作步骤 下载Grafana安装包。 进入下载链接,单击Download the installer,等待下载成功即可。 安装Grafana。 双击安装包,按照指示流程安装完成即可。
ensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_64架构的主机,操作系统ubuntu-18.04,通过编写Dockerfile文件制作自定义镜像。 目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用GPU规格资源运行训练任务。
创建工作空间 功能介绍 创建工作空间("default"为系统预留的默认工作空间名称,不能使用)。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/
AI开发流程科普视频 特性讲解 昇腾云服务 产品介绍 03:55 了解什么是昇腾云服务 华为云ModelArts服务视频 训练作业容错检查功能介绍 04:48 了解什么是训练作业容错检查功能 华为云ModelArts服务视频 高可用冗余节点功能介绍 03:07 了解什么是高可用冗余节点功能
Torch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_64架构的主机,操作系统ubuntu-18.04,通过编写Dockerfile文件制作自定义镜像。 目标:构建安装如下软件的容器镜像,并在ModelArts平台
是否支持sudo提权? 出于安全考虑,Notebook不支持sudo提权操作。 父主题: 规格限制
Torch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_64架构的主机,操作系统ubuntu-18.04,通过编写Dockerfile文件制作自定义镜像。 目标:构建安装如下软件的容器镜像,并在ModelArts平台
Notebook、训练、推理部署 开发环境Notebook 开发环境的Notebook,根据不同的工作环境,对应支持的镜像和版本有所不同。 表3 Notebook支持的镜像 镜像名称 镜像描述 适配芯片 支持SSH远程开发访问 支持在线JupyterLab访问 pytorch1.8-cuda10.2-cudnn7-ubuntu18
开发环境Notebook 开发环境的Notebook,根据不同的工作环境,对应支持的镜像和版本有所不同。 表3 新版Notebook支持的镜像 镜像名称 镜像描述 适配芯片 支持SSH远程开发访问 支持在线JupyterLab访问 pytorch1.8-cuda10.2-cudnn7-ubuntu18
户的权限管理,各个云服务都提供了一些预置的“系统策略”供用户直接使用。如果预置的策略不能满足您的细粒度权限控制要求,则可以通过“自定义策略”来进行精细控制。 表1列出了ModelArts的所有预置系统策略。 表1 ModelArts系统策略 策略名称 描述 类型 ModelArts