检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
} ] } 在统一身份认证服务页面的左侧导航选择“用户组”,在用户组页面查找待授权的用户组名称,在右侧的操作列单击“授权”,勾选步骤2创建的自定义策略,单击“下一步”,选择授权范围方案,单击“确定”。 如果没有用户组,也可以创建一个新的用户组,并通过“用户组管理”功能添
"desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model>
配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 步骤一:配置精度测试环境 精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/
配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 步骤一:配置精度测试环境 精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换
"desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model>
模型版本。 source_job_version String 来源训练作业的版本。 source_location String 模型所在的OBS路径或SWR镜像的模板地址。 source_job_id String 来源训练作业的ID。 source_copy String 镜像复
python main.py -a resnet50 -b 128 --epochs 5 dog_cat_1w/ 此处的“demo”为用户自定义的OBS存放代码路径的最后一级目录,可以根据实际修改。 资源池:在“专属资源池”页签选择GPU规格的专属资源池。 规格:选择单GPU规格。 单击“
在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换
配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 步骤一:配置精度测试环境 精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/
shape信息 PyTorch模型转换为Onnx模型(可选) 获取onnx模型有以下两种方式。下文介绍如何通过方式一进行操作。如果采用方式二,可以跳过此步骤。 方式一:使用官方提供的模型转换脚本将Pytorch模型转换为onnx模型。 方式二:对于提供了onnx模型的仓库,可以直接下载onnx模型。
类型type、属性properties,必需属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured
是否支持预览。可选值如下: true:支持预览 false:不支持预览 process_parameter 否 String 图像缩略设置,同OBS缩略图设置,详见OBS缩略图设置。如:image/resize,m_lfit,h_200表示等比缩放目标缩略图并设置高度为200像素。 sample_state
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的hanler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/tasks/preprocess/data_handler
请求体的大小不超过12MB,超过后请求会被拦截。 因APIG(API网关)限制,平台每次请求预测的时间不超过40秒。 获取AK/SK 如果已生成过AK/SK,则可跳过此步骤,找到原来已下载的AK/SK文件,文件名一般为:credentials.csv。 如下图所示,文件包含了租户名(User Name),AK(Access
配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 步骤一:配置精度测试环境 精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/
"desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model>
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的hanler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析
常见问题 模型文件目录下不能出现dockerfile文件; “查看构建日志”中显示“Not only a Dockerfile in your OBS path, please make sure, The dockerfile list”,表示dockerfile文件目录有问题,模型文