检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以下参数取值主要以l
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b
、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例:
Workflow工作流的描述信息。 steps 否 Array of WorkflowStep objects Workflow工作流包含的步骤定义。 user_name 否 String 创建Workflow工作流的用户名。 workspace_id 否 String 工作空间ID。
String Workflow工作流的描述信息。 steps Array of WorkflowStep objects Workflow工作流包含的步骤定义。 user_name String 创建Workflow工作流的用户名。 workspace_id String 工作空间ID。 data_requirements
xml --2.jpg --2.xml ... 输出说明 由于算法中有些操作将会舍弃一些数据,输出文件夹里可能不包含全量数据集。例如,“Rotate”会舍弃标注框超出原始图片边界的图片。 输出目录结构如下所示。其中“Data”文件夹用于存放新生成的图片和标注
B和Llama2-80B基础模型(名字必须一致)创建模型,且“权重设置与词表”选择“自定义权重”时,需要修改权重配置才能正常运行模型,操作步骤请参见修改权重配置。 前提条件 已准备好用于生成专属模型的模型权重文件,并存放于OBS桶中,OBS桶必须和MaaS服务在同一个Region下。
),不同的模型输入,需要填写的参数不同。当模型输入为JSON文件时,则需要根据配置文件生成映射文件;如果模型输入为文件时,则不需要。 操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“模型部署 > 批量服务”,默认进入“批量服务”列表。 在批量服务列表中,单击左上角“部署”,进入“部署”页面。
String Workflow工作流的描述信息。 steps Array of WorkflowStep objects Workflow工作流包含的步骤定义。 user_name String 创建Workflow工作流的用户名。 workspace_id String 工作空间ID。 data_requirements
String Workflow工作流的描述信息。 steps Array of WorkflowStep objects Workflow工作流包含的步骤定义。 user_name String 创建Workflow工作流的用户名。 workspace_id String 工作空间ID。 data_requirements
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b
、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例:
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以下参数取值主要以l
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以下参数取值主要以l
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例:
已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目ID和名称、获取帐号名和帐号ID和获取用户名和用户ID。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST https://{iam_endpoint}/v3/auth/tokens