已找到以下 156 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 近线作业 - 推荐系统 RES

    窗口间隔(秒) 近线策略处理的窗口间隔,单位为秒,10代表每隔10s进行一次算。 10s。 算子参数 在线服务名:使用的在线服务的名称。该在线服务需满足前提条件的要求。 流程名:在线服务对应的在线流程名称。 异常数据输出路径:单击右侧的按钮,选择数据在OBS中的存放路径,此路径下会记录不符合任务要求的输入数据。

  • 更新智能场景内容 - 推荐系统 RES

    离线排序作业名称(在线训练任务需要提供此参数)。 update_interval 否 Integer 更新周期(在线训练任务需要提供此参数)。 optimizer 否 Optimizer object 优化器(在线训练任务需要提供此参数)。 flows 否 Flow object 在线流程(在线训练任务需要提供此参数)。

  • 创建智能场景 - 推荐系统 RES

    离线排序作业名称(在线训练任务需要提供此参数)。 update_interval 否 Integer 更新周期(在线训练任务需要提供此参数)。 optimizer 否 Optimizer object 优化器(在线训练任务需要提供此参数)。 flows 否 Flow object 在线流程(在线训练任务需要提供此参数)。

  • 修改训练作业参数 - 推荐系统 RES

    离线排序作业名称(在线训练任务需要提供此参数)。 update_interval 否 Integer 更新周期(在线训练任务需要提供此参数)。 optimizer 否 Optimizer object 优化器(在线训练任务需要提供此参数)。 flows 否 Flow object 在线流程(在线训练任务需要提供此参数)。

  • 新建多个训练作业 - 推荐系统 RES

    离线排序作业名称(在线训练任务需要提供此参数)。 update_interval 否 Integer 更新周期(在线训练任务需要提供此参数)。 optimizer 否 Optimizer object 优化器(在线训练任务需要提供此参数)。 flows 否 Flow object 在线流程(在线训练任务需要提供此参数)。

  • 排序策略-离线排序模型 - 推荐系统 RES

    Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。 表1 逻辑斯蒂回归参数说明 参数名称

  • 新建训练作业 - 推荐系统 RES

    离线排序作业名称(在线训练任务需要提供此参数)。 update_interval Integer 更新周期(在线训练任务需要提供此参数)。 optimizer Optimizer object 优化器(在线训练任务需要提供此参数)。 flows Flow object 在线流程(在线训练任务需要提供此参数)。

  • 约束与限制 - 推荐系统 RES

    约束与限制 您能创建的在线服务的数量与配额有关系,具体请参见关于配额。 更详细的限制请参见具体API的说明。 父主题: 使用前必读

  • RES操作流程 - 推荐系统 RES

    运行推荐作业 创建在线服务 - 创建在线服务用于部署上线服务、更新模型。配置实时计算的逻辑,包括设置在线流量、组装推荐结果和设置排序策略。根据策略做在线推荐结果融合、过滤、重排以及多流程之间的AB,并返回最终结果。 创建在线服务 获取推荐结果 - 您可以通过在线服务预测结果,也可以通过API接口获取最终的推荐结果。

  • 实时日志 - 推荐系统 RES

    userId String 用户ID。 是 objectType String 发生行为对象的类型, item是用户和商品本身发生的行为。 是 actionObject String 对应行为发生的对象的值,如果是和商品发生关系:则是商品的id(itemId)的值。 是 actionType

  • 查询数据源详情 - 推荐系统 RES

    离线排序作业名称(在线训练任务需要提供此参数)。 update_interval Integer 更新周期(在线训练任务需要提供此参数)。 optimizer Optimizer object 优化器(在线训练任务需要提供此参数)。 flows Flow object 在线流程(在线训练任务需要提供此参数)。

  • 提交流式训练作业 - 推荐系统 RES

    online_job_uuid 是 String 关联的在线服务的uuid。 flow_name 是 String 关联在线服务的其中一个在线流程的名称。流式训练作业所需的行为参数、模型文件路径、数据预处理信息等参数会从指定的在线服务的在线流程中获取。 online_training_config

  • RES自定义策略 - 推荐系统 RES

    如果系统预置的RES权限不满足您的授权要求,可以创建自定义策略。自定义策略中可以添加的授权项(Action)请参考策略支持的授权项。 目前华为云支持以下两种方式创建自定义策略: 可视化视图创建自定义策略:无需了解策略语法,按可视化视图导航栏选择云服务、操作、资源、条件等策略内容,可自动生成策略。

  • 查询训练作业 - 推荐系统 RES

    离线排序作业名称(在线训练任务需要提供此参数)。 update_interval Integer 更新周期(在线训练任务需要提供此参数)。 optimizer Optimizer object 优化器(在线训练任务需要提供此参数)。 flows Flow object 在线流程(在线训练任务需要提供此参数)。

  • 购买套餐包 - 推荐系统 RES

    功能包括:数据源。 在线服务:用于推荐系统在线推理,获得最终推荐结果。 套餐介绍 计算资源分为“计算型CPU(1U4G)实例”、“计算型GPU(P100)实例”、“计算型GPU(V100)实例”3种类型。存储资源支持“画像存储(一百万)”。在线服务支持“在线并发9000TPS-时

  • 离线数据源 - 推荐系统 RES

    用户-物品行为表,每行记录用户的单次行为信息,包含用户标识符、行为对象标识符、行为类型和行为时间等信息。 表4 字段描述 字段名 类型 描述 是否必选 userId String 用户ID。 是 objectType String 发生行为对象的名称。 item:是用户和物品本身发生的行为。 是

  • 基本概念 - 推荐系统 RES

    过滤规则用于生成推荐的过滤集,包含黑白名单、 特征过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。 特征工程 特征工程常用于对原始数据进行特征挖掘的处理,形成的结果用于排序策略的训练。 排序策略 排序策略利用CTR预估或综合性计算的算法给候选集做打分。 在线服务 在线服务应用于做线上推荐,每个服务之间是

  • 准备离线数据源 - 推荐系统 RES

    重,可做修改。同时支持自定义行为类型。 如果当前场景只有用户关注人这一种行为,则此参数表示用户关注的对象是人。 如果当前场景只有用户关注物品这一种行为,则此参数表示用户关注的对象是物品。 说明: 自定义行为类型,行为名称需要符合以下要求,由数字、字母、下划线组成,长度为4-32。

  • 创建智能场景 - 推荐系统 RES

    从右侧下拉框中选择RES系统中已有的数据源。当无可用数据源时,此下拉框为空。 描述 对于该场景的描述信息。 场景规格 - 选择离线计算、实时计算、排序模型训练规格和在线并发数。 个性化配置 匹配特征对 匹配用户和物品特征,以便于筛选出该用户相关联的物品进行推荐。 用户特征名:从下拉框中选择目标用户特征用于和物品特征进行匹配。

  • 自定义场景简介 - 推荐系统 RES

    略生成的候选集进行重排序,得到推荐候选集列表。 排序策略-离线排序模型 在线服务 在线服务用来做线上推荐时的应用,每个服务之间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 在线服务 效果评估 指用于通过推荐系统推荐出去的结果集并利用trace_id