检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
取值范围大于0并且大于等于(endTimeInMillis - startTimeInMillis) / (60 * 1000) - 1 当开始时间与结束时间都设置为-1时,系统会将结束时间设置为当前时间UTC毫秒值,并按(endTimeInMillis - durationInMinutes * 60 * 1000)计算开始时间。如:-1
件地址。 prefix_name:预训练json文件的前缀字段名称,例如:您是一个xxx专家,您需要回答下面问题。prefix_name可设置为None,此时预训练数据集只有input和output两段输入。 input_name:预训练json文件的指令输入字段名称,例如:请问苹果是什么颜色。
件地址。 prefix_name:预训练json文件的前缀字段名称,例如:您是一个xxx专家,您需要回答下面问题。prefix_name可设置为None,此时预训练数据集只有input和output两段输入。 input_name:预训练json文件的指令输入字段名称,例如:请问苹果是什么颜色。
件地址。 prefix_name:预训练json文件的前缀字段名称,例如:您是一个xxx专家,您需要回答下面问题。prefix_name可设置为None,此时预训练数据集只有input和output两段输入。 input_name:预训练json文件的指令输入字段名称,例如:请问苹果是什么颜色。
transformers sentencepiece #安装量化工具依赖 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py 详细说明可以参考vLLM官网:https://docs
V1版本修改:file_io._NUMBER_OF_PROCESSES=1 V2版本修改:可以 file_io._LARGE_FILE_METHOD = 1,将模式设置成V1然后用V1的方式修改规避,也可以直接file_io._LARGE_FILE_TASK_NUM=1。 复制文件夹时可采用: mox.file
创建模型界面上配置的健康检查地址与实际配置的是否一致 如果使用的是ModelArts提供的基础镜像创建模型,健康检查URL默认必须为/health。 图4 设置健康检查URL 模型推理代码customize_service.py编写有问题 如果模型推理代码customize_service.py编
error_code String ModelArts错误码。 error_msg String 具体错误信息。 请求示例 为指定服务添加标签。设置TMS标签的key为“test”和“model_version”,TMS标签的value为“service-gpu”和“0.1”。 htt
resource_requirements Array of resource_requirements objects 算法资源约束,可不设置。设置后,在算法使用于训练作业时,控制台会过滤可用的公共资源池。 advanced_config advanced_config object
模型基本信息参数说明 参数名称 说明 名称 模型名称。支持1~64位可见字符(含中文),名称可以包含字母、中文、数字、中划线、下划线。 版本 设置所创建模型的版本。第一次导入时,默认为0.0.1。 说明: 模型创建完成后,可以通过创建新版本,导入不同的元模型进行调优。 描述 模型的简要描述。
规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置 规格与节点数 1 llama2 llama2-7b SEQ_LEN=4096 TP(tensor model
前支持“按节点比例”和“按实例数量”两种滚动方式。 按节点比例:每批次驱动升级的实例数量为“节点比例*资源池实例总数”。 按实例数量:可以设置每批次驱动升级的实例数量。 对于不同的升级方式,滚动升级选择实例的策略会不同: 如果升级方式为安全升级,则根据滚动节点数量选择无业务的节点,隔离节点并滚动升级。
专属资源池类型归一:不再区分训练、推理专属资源池。如果业务允许,您可以在一个专属资源池中同时跑训练和推理的Workload。同时,也可以通过“设置作业类型”来开启/关闭专属资源池对特定作业类型的支持。 自助专属池网络打通:可以在ModelArts管理控制台自行创建和管理专属资源池所属
问题4:Error waiting on exit barrier错误 错误截图: 报错原因:多线程退出各个节点间超时时间默认为300s,时间设置过短。 解决措施: 修改容器内torch/distributed/elastic/agent/server/api.py文件参数: vim
ain.py”。 超参 当资源规格为单机多卡时,需要指定超参world_size和rank。 当资源规格为多机时(即实例数大于 1),无需设置超参world_size和rank,超参会由平台自动注入。 方式二:使用自定义镜像功能,通过torch.distributed.launch命令启动训练作业。
resource_requirements 否 Array of ResourceRequirement objects 算法资源约束。可不设置。设置后,在算法使用于训练作业时,控制台会过滤可用的公共资源池。 advanced_config 否 AlgorithmAdvancedConfig
total_count Integer 不分页的情况下,符合查询条件的总服务数量。 count Integer 当前查询结果的服务数量,不设置offset、limit查询参数时,count与total相同。 services service结构数组 查询到的服务集合。 表3 service结构
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数;
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数;
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数;