检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以是"human"(人类)或"gpt"(机器),表示是谁说的这句话。
matching files for xxx://xxx 原因分析 在ModelArts中,用户的数据都是存放在OBS桶中,而训练作业运行在容器中,无法通过访问本地路径的方式访问OBS桶中的文件。 处理方法 读取文件报错,您可以使用Moxing将数据复制至容器中,再直接访问容器中的数据。请参见步骤1。
它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以是"human"(人类)或"gpt"(机器),表示是谁说的这句话。
它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以是"human"(人类)或"gpt"(机器),表示是谁说的这句话。
代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建
代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建
方式二:通过OBS Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。具体步骤如下: 在创建OBS桶创建的桶下创建文件夹用以存放模型,例如在桶standard-llama2-13b中创建文件夹model/llama-2-13b-hf。 利用OBS
方式二:通过OBS Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。具体步骤如下: 在创建OBS桶创建的桶下创建文件夹用以存放模型,例如在桶standard-llama2-13b中创建文件夹model/llama-2-13b-hf。 利用OBS
方式二:通过OBS Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。具体步骤如下: 在创建OBS桶创建的桶下创建文件夹用以存放模型,例如在桶standard-llama2-13b中创建文件夹model/llama-2-13b-hf。 利用OBS
方式二:通过OBS Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。具体步骤如下: 在创建OBS桶创建的桶下创建文件夹用以存放模型,例如在桶standard-llama2-13b中创建文件夹model/llama-2-13b-hf。 利用OBS
方式二:通过OBS Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。具体步骤如下: 在创建OBS桶创建的桶下创建文件夹用以存放模型,例如在桶standard-llama2-13b中创建文件夹model/llama-2-13b-hf。 利用OBS
选择“自定义”。 镜像 容器镜像选择上一步上传到SWR的镜像。 代码目录 必填,选择训练代码文件所在的OBS目录。 需要提前将代码上传至OBS桶中,目录内文件总大小要小于或等于5GB,文件数要小于或等于1000个,文件深度要小于或等于32。 训练代码文件会在训练作业启动的时候被系
创建方式 选择“自定义算法”。 启动方式 选择“预置框架”,引擎选择“PyTorch”,PyTorch版本根据训练要求选择。 代码目录 选择OBS桶中训练code文件夹所在路径,例如“obs://test-modelarts/code/”。 启动文件 选择代码目录中训练作业的Pyth
--accuracy 指定模型精度,只支持fp16和fp32。 string 否 fp16 - Python API 导入包并创建tailor对象。 from tailor.tailor import Tailor onnx_model_path = "./resnet50-v2-7
下载路径。 模型迁移到其他账号 您可以通过如下两种方式将训练的模型迁移到其他账号。 将训练好的模型下载至本地后,上传至目标账号对应区域的OBS桶中。 通过对模型存储的目标文件夹或者目标桶配置策略,授权其他账号进行读写操作。详请参见配置高级桶策略。 父主题: Standard模型训练
use_ascend: 是否使用Ascend onnx_runtime_model: onnx模型对象 get_shape: 是否获取模型shape信息、输入数据shape信息 resize_shape:
下载完成后,将数据上传至SFS相应目录中。由于数据集过大,推荐先通过obsutil工具将数据集传到OBS桶后,再将数据集迁移至SFS。 在本机机器上运行,通过obsutil工具将本地数据集传到OBS桶。 # 将本地数据传至OBS中 # ./obsutil cp ${数据集所在的本地文件夹路径}
练输入路径参数和训练输出路径参数。这四种输入搭建了用户代码和ModelArts Standard后台交互的桥梁。 代码目录路径 您需要在OBS桶中指定代码目录,并将训练代码、依赖安装包或者预生成模型等训练所需文件上传至该代码目录下。训练作业创建完成后,ModelArts会将代码目录及其子目录下载至后台容器中。
方式二:根据创建训练作业生成的训练作业对象查询。 job_info = job_instance.get_job_info() print(job_info) 参数说明 表1 Estimator请求参数说明 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法请参考Session鉴权。
Notebook的详细资料请查看Notebook使用场景介绍。 本案例中的训练作业需要通过SFS Turbo挂载盘的形式创建,因此需要将上述数据集、代码、权重文件从OBS桶上传至SFS Turbo中。 用户需要创建开发环境Notebook,并绑定SFS Turbo,以便能够通过Notebook访问SFS T