检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_name>/training_data" obs_model_dir= "obs://<bucket_name>/model"
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具 方式二:通过OBS Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。具体步骤如下: 在创建OBS桶创建的桶下创建文件夹用以存放模型,例如在桶standard-ll
mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_name>/training_data" obs_model_dir= "obs://<bucket_name>/model"
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结
前提条件 已存在创建完成的数据集。 创建一个空的OBS桶,OBS桶与ModelArts在同一区域,并确保用户具有OBS桶的操作权限。 本地上传 文件型和表格型数据均支持从本地上传。从本地上传的数据存储在OBS目录中,请先提前创建OBS桶。 从本地上传的数据单次最多支持100个文件同时上传,总大小不超过5GB。
创建训练作业时提示“对象目录大小/数量超过限制”,如何解决? 问题分析 创建训练作业选择的代码目录有大小和文件个数限制。 解决方法 将代码目录中除代码以外的文件删除或存放到其他目录,保证代码目录大小不超过128MB,文件个数不超过4096个。 父主题: 创建训练作业
查看专属池驱动 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)存储输入输出数据、运行代码和模型文件,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。
登录ModelArts管理控制台,进入“AI应用”页面中,单击“创建应用”,进入AI应用创建页面,设置相关参数如下: 元模型来源:选择“从对象存储服务(OBS)中选择”。 选择元模型:从OBS中选择一个模型包。 AI引擎:选择“Custom”。 引擎包:从容器镜像中选择一个镜像。 容器调用接口:端口和协议可根据镜像实际使用情况自行填写。
[ascend_context] precision_mode=enforce_fp32 #使用 fp32 其他方式 需要实际分析算子层面的差异,需要联系华为工程师进行具体分析。 父主题: 模型精度调优
lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907)
会下载历史版本占用磁盘空间。 在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结
Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch
Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch
lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.909)
JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=output_storage.join("/train_output/")))], spec=wf.steps.JobSpec( resource=wf
查看专属池驱动 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)存储输入输出数据、运行代码和模型文件,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。
Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到Notebook的工作目录/home/ma-user/work/下。上传代码参考如下。 import moxing as mox obs_dir = "obs://${bucket_name}/${folder-name}"
时间。 处理方法 在创建训练作业时,数据可以保存到OBS上。不建议使用TensorFlow、MXNet、PyTorch的OBS接口直接从OBS上读取数据。 如果文件较小,可以将OBS上的数据保存成“.tar”包。训练开始时从OBS上下载到“/cache”目录,解压以后使用。 如果文件较大,可以保存成多个“