检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String 训练作业的数据集版本ID。 type String 数据集类型。 “obs”:表示使用OBS的数据。 “dataset”:表示使用数据集的数据。 data_url String OBS的桶路径。 表5 volumes属性列表 参数 参数类型 说明 nfs Object
查看Lite Server服务器详情 在您创建了Lite Server服务器后,可以通过管理控制台查看和管理您的Lite Server服务器。本节介绍如何查看Lite Server服务器的详细信息,包括名称/ID、规格、镜像等信息。 在弹性节点Server的节点列表页中,可以查看
__WORKFORCE_SAMPLED_REJECTED__:采样已驳回 __AUTO_ANNOTATION__:待确认 sample_time Long 样本时间,OBS最后修改时间。 sample_type Integer 样本类型。可选值如下: 0:图像 1:文本 2:语音 4:表格 6:视频 9:自由格式
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-3rdLLM-6.3.905-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
SDXL&SD1.5 ComfyUI基于Lite Cluster适配NPU推理指导(6.3.906) ComfyUI是一款基于节点工作流的Stable Diffusion操作界面。通过将Stable Diffusion的流程巧妙分解成各个节点,成功实现了工作流的精确定制和可靠复现
批量更新团队标注样本的标签 功能介绍 批量更新团队标注样本的标签。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v2/{project_id}/data
查询节点池的节点列表 功能介绍 查询节点池的节点列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/pools/{poo
查询AI应用列表 功能介绍 查询AI应用列表,可以根据不同的检索参数进行查询。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/models
准备代码 本教程中用到的训练、推理代码如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite k8s Cluster上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9
--model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,若指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,若指定则
--model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指
日志提示“RuntimeError: Cannot re-initialize CUDA in forked subprocess” 问题现象 在使用pytorch启动多进程的时候,出现如下报错: RuntimeError: Cannot re-initialize CUDA in
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite DevServer上的微调方案,包括SFT全参微调、LoRA微调、DPO训练方案。 DPO(Direct Preference
/home/ma-user/etc/ssh_host_rsa_key0 将准备好的sshd启动脚本文件上传至OBS的训练代码目录下。 创建自定义镜像训练作业。 “代码目录”选择存有sshd启动脚本文件的OBS地址。 “启动命令”需要适配sshd启动脚本,如下所示: bash ${MA_JOB_DI
(可选)本地服务器安装ModelArts SDK 如果需要在个人PC或虚拟机上使用ModelArts SDK,则需要在本地环境中安装ModelArts SDK,安装后可直接调用ModelArts SDK轻松管理数据集、创建ModelArts训练作业及创建AI应用,并将其部署为在线服务。
LoRA微调训练 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
sample_name String 根据样本名称搜索(含后缀名)。 sample_time String 样本加入到数据集时,会根据样本在OBS上的最后修改时间(精确到天)建立索引,此处可以根据此时间进行搜索。可选值如下: month:搜索往前30天至今天内添加的样本 day:搜索昨天(往前1天)至今天内添加的样本
SFT全参微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
pipeline应用准备 当前迁移路径是从ONNX模型转换到MindIR模型,再用MindSpore Lite做推理, 所以迁移前需要用户先准备好自己的ONNX pipeline。下文以官方开源的图生图的Stable Diffusion v1.5的onnx pipeline代码为例进行说明。