检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
train_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有
型权重文件的OBS路径,必须选择到模型文件夹。单次上传本地文件到OBS的总大小不能超过5GB,详情请参见如何上传超过5GB的大对象。 权重校验 当“权重设置与词表”选择“自定义权重”时,需要选择是否开启权重文件校验。默认是开启的。 当开启权重校验时,平台会对OBS中的权重文件进行
部署到端、边、云的各种设备上和各种场景上,并且还为个人开发者、企业和设备生产厂商提供了一整套安全可靠的一站式部署方式。 图1 部署模型的流程 在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。 支持各种部署场景,既能部署为云端的在线推理服务和批量推理任务,也能部署到端,边等各种设备。
在华为公有云平台,申请的资源一般要求连通网络。因此用户在准备环境时可以运行 scripts/install.sh 直接下载安装资源,或通过 Dockerfile 下载安装资源并构建一个新的镜像。 若用户的机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,
ascend-snt9b(64GB)规格。请按需选择需要的规格,64GB规格的推理耗时更短。 推荐使用“西南-贵阳一”Region上的昇腾资源。 AI应用来源: 我的AI应用。 选择AI应用及其版本:此处选择上一步中创建的sdxl-webui-pytorch:0.0.1应用。 计算节点规格:
确保算法在GPU训练时,持续稳定可收敛。避免在迁移过程中排查可能的算法问题,并且要有好的对比标杆。如果是NPU上全新开发的网络,请参考PyTorch迁移精度调优排查溢出和精度问题。 理解GPU和NPU的构造以及运行的差别,有助于在迁移过程中分析问题并发挥NPU的优势。由于构造和运行机制的差别,整个迁移过程并非是完全
在假定是Ring算法的情况下计算出来的。 计算公式是有假设的: 总线带宽 = 算法带宽 * 2 ( N-1 ) / N ,算法带宽 = 数据量 / 时间 但是这个计算公式的前提是用Ring算法,Tree算法的总线带宽不可以这么计算。 如果Tree算法算出来的总线带宽相当于是相对R
其在CPU和Ascend上的实现方法存在差异(硬件结构不同),后者在运算此类算子时涉及到数组的重排,性能较差; 模型的部分算子在昇腾上不支持,或者存在Transpose操作,会导致模型切分为多个子图,整体的推理耗时随着子图数量的增多而增长; 模型没有真正的调用昇腾后端,而是自动切
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
10 JOBSTAT_COMPLETED,作业已经完成。 11 JOBSTAT_FAILED,作业运行失败。 12 JOBSTAT_KILLED,作业取消成功。 13 JOBSTAT_CANCELED,作业取消。 14 JOBSTAT_LOST,作业丢失。 15 JOBSTAT_SCALING,作业正在扩容。
自定义设置的云上开发环境名称。 HostName: 云上开发环境的访问地址,即在开发环境实例页面远程访问模块获取的访问地址。例如:dev-modelarts-cnnorth4.huaweicloud.com Port: 云上开发环境的端口,即在开发环境实例页面远程访问模块获取的端口号。
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提
该方式是指用户在VS Code上使用ModelArts VS Code Toolkit插件提供的登录和连接按钮,连接云上实例。 VS Code手动连接Notebook 该方式是指用户使用VS Code Remote SSH插件手工配置连接信息,连接云上实例。 安装VS Code软件
开发环境提供的预置镜像版本是依据用户反馈和版本稳定性决定的。当用户的功能开发基于ModelArts提供的版本能够满足的时候,建议用户使用预置镜像,这些镜像经过充分的功能验证,并且已经预置了很多常用的安装包,用户无需花费过多的时间来配置环境即可使用。 开发环境提供的预置镜像主要包含:
在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装NPU设备和驱动,或释放被挂载的NPU。
error”。并且问题是必现问题,每次运行到同一地方的时候,出现错误。 原因分析 出现该问题的可能原因如下: 程序运行过程中,产生了core文件,core文件占满了"/"根目录空间。 本地数据、文件保存将"/cache"目录3.5T空间用完了。 云上训练磁盘空间一般指如下两个目录的磁盘空间: “/”根目录,是docker中配置项“base
Array of objects 样本的处理描述。 result_property Integer 样本的处理状态。可选值如下: -1:全部 0:保留 1:修改 2:删除 3:新增 sample_id String 样本ID,通过OBS路径的md5生成。 signed_new_source
Graph,DAG)的开发。一个DAG是由节点和节点之间的关系描述组成的。开发者通过定义节点的执行内容和节点的执行顺序定义DAG。绿色的矩形表示为一个节点,节点与节点之间的连线则是节点的关系描述。整个DAG的执行其实就是有序的任务执行模板。 图3 工作流 Workflow提供的样例 Mod
可以基于保存的镜像创建训练作业。 message String 镜像创建的时间,UTC毫秒。 create_time Long 镜像保存操作过程中,展示构建信息。 请求示例 如下以查询uuid为2cd88daa-31a4-40a8-a58f-d186b0e93e4f的训练作业对应worker-0镜像保存任务为例。
或者对模型了解不多的情形下都推荐使用预检工具,检查第一个步骤或Loss明显出现问题的步骤。它可以抓取模型中API输入的数值范围,根据范围随机生成输入,用相同的输入分别在NPU(GPU)和CPU上执行算子,比较输出差异。预检最大的好处是,它能根据算子(API)的精度标准来比较输出结