检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
操作步骤 在Ubuntu 20.04上禁止内核自动升级,步骤如下: 禁用unattended-upgrades。 “unattended-upgrades”是一个用于安装安全更新的软件包。
Step1 处理fill50k数据集 使用ma-user用户在容器上执行如下命令解压数据集。
Lite Cluster资源管理介绍 在ModelArts控制台,您可以对已创建的资源进行管理。通过单击资源池名称,可以进入到资源池详情页,您可以在详情页进行下述操作。 管理Lite Cluster节点:节点是容器集群组成的基本元素,您可以对资源池内单节点进行替换、删除、重置等操作
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-3rdLLM-6.3.905-xxx.zip 说明: 软件包名称中的xxx
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
ModelArts Standard推理服务支持VPC直连的高速访问通道配置 背景说明 访问在线服务的实际业务中,用户可能会存在如下需求: 高吞吐量、低时延 TCP或者RPC请求 因此,ModelArts提供了VPC直连的高速访问通道功能以满足用户的需求。 使用VPC直连的高速访问通道
ownership String 资源所属,枚举值如下: MANAGED:托管,即资源在服务上。 DEDICATED:非托管,即资源在用户账号上,只有在category为EFS时支持。
日志提示“RuntimeError: Cannot re-initialize CUDA in forked subprocess” 问题现象 在使用pytorch启动多进程的时候,出现如下报错: RuntimeError: Cannot re-initialize CUDA in
日志提示"No CUDA-capable device is detected" 问题现象 在程序运行过程中,出现如下类似错误。 1.‘failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Step1 处理fill50k数据集 使用ma-user用户在容器上执行如下命令解压数据集。
昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。
下载或读取文件报错,提示超时、无剩余空间 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未达到50GB,只有默认的
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
准备代码 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.908-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
可选值如下: force:强制升级,立即升级节点驱动,可能影响节点上正在运行的作业 idle:安全升级,待节点上没有作业运行时进行驱动升级 表21 PoolStatus 参数 参数类型 描述 phase String 资源池集群状态。
产品优势 ModelArts服务具有以下产品优势。 稳定安全的算力底座,极快至简的模型训练 支持万节点计算集群管理 大规模分布式训练能力,加速大模型研发 提供高性价比国产算力 多年软硬件经验沉淀,AI场景极致优化 加速套件,训练、推理、数据访问多维度加速 一站式端到端生产工具链,一致性开发体验
方式二:单击某个资源池操作列的“扩缩容”,修改容器引擎空间大小(仅作用在新建节点上)。 存量节点不支持修改容器引擎空间大小,仅作用在新建节点上,且会导致资源池内该规格下节点的dockerBaseSize不一致,可能会使得部分任务在不同节点的运行情况不一致。
推荐使用“西南-贵阳一”Region上的昇腾资源。 AI应用来源: 我的AI应用。 选择AI应用及其版本:此处选择上一步中创建的sdxl-webui-pytorch:0.0.1应用。
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。