检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用样例的有标签的数据或者自己通过其他方式打好标签的数据放到OBS桶里,在modelarts中同步数据源以后看不到已标注,全部显示为未标注 OBS桶设置了自动加密会导致此问题,需要新建OBS桶重新上传数据,或者取消桶加密后,重新上传数据。 父主题: Standard数据管理
当数据集存在较多数据文件(即海量小文件),数据存储在OBS中,训练过程需反复从OBS中读取文件,导致训练过程一直在等待文件读取,效率低。 解决方法 建议将海量小文件,在本地压缩打包。例如打包成.zip格式。 将此压缩后的文件上传至OBS。
适配PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导 LLM开源大模型基于Lite Cluster适配PyTorch NPU训练指导 支持如下模型适配PyTorch-NPU的推理。
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。
使用CloudShell或者其它SSH远程工具 方式二:通过OBS Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。
Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。
使用CloudShell或者其它SSH远程工具 方式二:通过OBS Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU
job_instance.control_job() 参数说明 表1 control_job_by_id请求参数说明 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法请参考Session鉴权。
原因分析 根据报错日志分析,是因为一个float数据被当做对象下标访问了。 处理方法 将模型推理代码中的x[0][i]修改为x[i],重新部署服务进行预测。 父主题: 服务预测
创建一个空的OBS桶,OBS桶与ModelArts在同一区域,并确保用户具有OBS桶的操作权限。 本地上传 文件型和表格型数据均支持从本地上传。从本地上传的数据存储在OBS目录中,请先提前创建OBS桶。 从本地上传的数据单次最多支持100个文件同时上传,总大小不超过5GB。
使用华为云账号登录ModelArts管理控制台,在左侧导航栏单击“权限管理”,进入“权限管理”页面,单击“添加授权”。
准备Notebook ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。
准备Notebook ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。
准备Notebook ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。
准备Notebook ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。
搜索“图像分类-ResNet_v1_50工作流”,单击“订阅”,勾选“我已同意《数据安全与隐私风险承担条款》和《华为云AI Gallery服务协议》”,单击“继续订阅”即可完成工作流的订阅。订阅过的工作流会显示“已订阅”。
网络调整公告 ModelArts针对网络进行安全加固和优化,新的网络模式可以为用户的资源提供更好的隔离性,提升云上资源的安全。为保障您的网络安全,建议您后续使用新网络创建Standard资源池。
参考如何在Notebook中上传下载OBS文件?操作指导,针对原有的Notebook,首先将代码和数据上传至OBS桶中。然后创建一个EVS类型的Notebook,将此OBS中的文件下载至Notebook本地(指新建的EVS类型Notebook)。 父主题: 代码运行故障
/scripts/obs_pipeline.sh 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install.sh则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。