检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错 使用autoAW
|──saved_checkpoints # 训练生成权重文件 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
重装的包与镜像装CUDA版本不匹配 问题现象 在现有镜像基础上,重新装了引擎版本,或者编译了新的CUDA包,出现如下错误: 1.“RuntimeError: cuda runtime error (11) : invalid argument at /pytorch/aten/s
前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径obs://<bucket_name>llm_tra
后未恢复,发起维修流程。 配置节点告警通知 节点故障指标(nt_npg)默认会上报到AOM,您可以在AOM配置短信、邮件等通知方式。 以下步骤基于AOM2.0配置。 登录AOM控制台。 在左侧导航栏选择“告警管理 > 告警规则”,单击“创建”,创建告警规则。 设置告警规则(以NPU掉卡为例)。
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换
模型运行时(自定义镜像,OBS模型和依赖)的安全性 及时更新修复安全问题 凭证等敏感数据的安全存储 推理部署安全最佳实践 外部依赖服务 ModelArts推理使用中需要用到一些其他的云服务,当您需要授权时,可以根据实际所需的权限范围进行自定义授权,其中模型管理依赖OBS相关权限,租户可以
"default": 24, "help": "每多少步记录一次步骤" }, { "name": "save_strategy"
pip install huggingface-hub==0.25.1 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution
安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/contai
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换
日志提示“Please upgrade numpy to >= xxx to use this pandas version” 问题现象 在安装其他包的时候,有依赖冲突,对numpy库有其他要求,但是发现numpy卸载不了。出现如下类似错误: your numpy version
训练作业日志中提示 “AttributeError: module '***' has no attribute '***'” 问题现象 训练日志中出现AttributeError: module '***' has no attribute '***'错误。如:AttributeError:
的具体配置,例如运行后端的配置等。下文以Python接口为例。 使用MindSpore Lite推理框架执行推理并使用昇腾后端主要包括以下步骤: 创建运行上下文:创建Context,保存需要的一些基本配置参数,用于指导模型编译和模型执行,在昇腾迁移时需要特别指定target为“A
“团队标注的图片自动加载智能标注结果”:根据需要选择是否将任务中智能标注待确认的结果自动同步给标注人员。 团队标注加载智能标注结果的处理步骤: 如果类型选择"指定标注团队",需要先创建团队标注任务,然后执行智能标注任务。 如果类型选择"指定标注管理员",在“我参与的”页签下选择团队标注任务,单击"分配任务"。
object 数据实际输入信息,异构作业只支持OBS。 表30 remote 参数 参数类型 描述 obs obs object 数据输入输出信息为OBS方式。 表31 obs 参数 参数类型 描述 obs_url String 训练作业需要的数据集OBS路径URL。如:“/usr/data/”。
Lite的DevServer。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户
创建训练作业提示错误码ModelArts.2763 问题现象 创建训练作业时,提示ModelArts.2763 : 选择的支持实例无效,请检查请求中信息的合法性。 原因分析 用户选择的训练规格资源和算法不匹配。 例如:算法支持的是GPU规格,创建训练作业时选择了ASCEND规格的资源类型。