检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格和格式等。 撰写提示词时,可以设置提示词变量,即在提示词中通过添加占位符{{ }}标识,表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。
比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么?
是否需要为您预订其他时间段或者其他会议室?"
文件类型为JSONL:每一行表示一段文本,形式为{"context":"context内容","target":"target内容"},每一段需要准确完整的语义,符合主流价值观,并且文本中不能存在异常字符、分行异常等影响模型训练的问题。问题和答案需要匹配,且不能有空值。
如下提供了本场景可能存在的常见问题,若在评测过程中出现如下问题,可以参考解决: 问题一:JSON字段缺失、JSON字段或值错误。 解决方案:对于这几种情况,需要在微调数据中增大该缺失字段的数据比例,同时也可以在Prompt中加入对该字段的强调。
表1 配置比例 配置比例 数据集大小上限500GB 第一阶段 第二阶段 - 数据集 原始大小 默认值 手动修改 实际大小 D1 100GB 1 1 100GB D2 50GB 1 2 50GB D3 200GB 1 1 200GB 训练数据集PD1 / 15 15 750GB 条数
每一行表示一段文本,形式为{"context":"context内容","target":"target内容"} content、target分别表示问题、答案 #示例 {"context":"非深户在职人员长期在异地居住的是否可以办理异地就医备案手续","target":"可以。
你很擅长根据一段简要的产品介绍,创作出高质量的带货口播。
热身比例 0.1 0~1 热身阶段占整体训练的比例。 模型刚开始训练时,如果选择一个较大的学习率,可能导致模型训练不稳定。选择使用warmup热身的方式,可以使开始训练的热身阶段内学习率较小,模型可以慢慢趋于稳定,待模型相对稳定后再逐渐提升至预设的最大学习率进行训练。
特别是模型生成超长内容时,通过实时审核模型生成的内容片段,可以有效降低首token的审核时延,同时确保用户看到的内容是经过严格审核的。 图3 大模型内容审核 购买内容审核套餐包时,如果使用“文本补全”和“多轮对话”功能,需要选择“文本内容审核”套餐。 父主题: 准备工作
xxx"} {"context": ["请分析以下内容的情感,回复你的看法\n内容:xxx], "target": "这段内容xxx"} …… 情感分类场景-较高质量数据:数据指向性明确。
热身比例 0.1 0~1 热身阶段占整体训练的比例。 模型刚开始训练时,如果选择一个较大的学习率,可能导致模型训练不稳定。选择使用warmup热身的方式,可以使开始训练的热身阶段内学习率较小,模型可以慢慢趋于稳定,待模型相对稳定后再逐渐提升至预设的最大学习率进行训练。
通过重试机制,在代码里检查返回值,碰到并发错误可以延时一小段时间(如2-5s)重试请求。 后端检查上一个请求结果,上一个请求返回之后再发送下一个请求,避免请求过于频繁。 父主题: 附录
提示词是什么 提示词也称为Prompt,是与大模型进行交互的输入,可以是一个问题、一段文字描述或者任何形式的文本输入。 提示词要素 指令:要求模型执行的具体任务或回答的问题。如:“写一篇关于勇士的小说”、“天空为什么是蓝色的?” 说明:对任务要求的补充说明。
// 建议在业务项目入口处配置 // 不需要添加.properties后缀 ConfigLoadUtil.setBaseName("application"); 完整配置项如下: 配置项中的密码等字段建议在配置文件或者环境变量中密文存放,使用时解密,确保安全,详见配置文件敏感信息加密配置
配置LLMs(Python SDK) LLMs模块用于对大语言模型API的适配封装,提供统一的接口快速地调用盘古、GALLERY三方模型等模型API。 初始化:根据相应模型定义LLM类,如使用盘古LLM为: LLMs.of("pangu")。 from pangukitsappdev.api.llms.factory
token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或者计算。 user 否 String 用于代表用户的唯一标识符,字符串长度最大64,最小1。
如果指标低是由于提示词(prompt)设置不合理,可以通过在模型训练阶段扩大训练集和验证集来优化模型,从而改善评估结果。另外,还可以将评估数据集设计得更接近训练集的数据,以提升评估结果的准确性。 父主题: 评估盘古大模型
其中,n-gram指的是一个句子中连续的n个单词片段。BLEU-4 的数值越高,表明模型性能越好。 困惑度指标介绍 困惑度用来衡量大语言模型预测一个语言样本的能力。数值越低,准确率越高,表明模型性能越好。 父主题: 训练盘古大模型
token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。不同系列模型在读取中文和英文内容时,字符长度转换为token长度的转换比如下。以N1为例,盘古模型1token≈0.75个英文单词,1token≈1.5汉字。