检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主
启动停止边缘节点服务实例 功能介绍 启动停止边缘节点服务实例。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v1/{project_id}/servic
服务状态一直处于“部署中” 问题现象 服务状态一直处于“部署中”,查看模型日志未发现服务有明显错误。 原因分析 一般情况都是模型的端口配置有问题。建议您首先检查创建模型的端口是否正确。 处理方法 模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。
--backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。 --t
选择技术文章所属分类。 3 输入摘要信息。 4 编辑技术文章的内容。右侧可以选择使用“富文本编辑器”或“markdown”方式编辑内容,也可上传附件,支持rar,zip,doc,docx,xls,xlsx,ppt,pptx,pdf,txt格式的附件,单个附件大小不超过20M,最多可传5个附件。
请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主
服务部署失败,报错No Module named XXX 问题现象 服务部署失败,报错:No Module named XXX 原因分析 No Module named XXX,表示模型中没有导入对应依赖模块。 处理方法 依赖模块没有导入,需要您在模型推理代码中导入缺失依赖模块。
ModelArts在线服务和批量服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v
菜单栏中选择“模型部署>在线服务”,进入在线服务管理页面。 单击在线服务列表“操作”列的“更多>删除”删除服务。 勾选在线服务列表中的服务,然后单击列表左上角“删除”按钮,批量删除服务。 单击目标服务名称,进入服务详情页面,单击右上角“删除”删除服务。 删除操作无法恢复,请谨慎操作。
SFT和LoRA微调使用的Alpaca数据集下载:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下:
IEF节点边缘服务部署失败 问题现象 部署边缘服务时,出现“异常”状态。 原因分析1 部署边缘服务时,使用到IEF纳管的边缘节点,就需要用户给ModelArts的委托赋予Tenant Administrator权限,否则将无法成功部署边缘服务。具体可参见IEF的权限说明。 处理方法1
SFT和LoRA微调使用的Alpaca数据集下载:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下:
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
在遇到资源不足的情况时,ModelArts会进行三次重试,在服务重试期间,如果有资源释放出来,则服务可以正常部署成功。 如果三次重试后依然没有足够的资源,则本次服务部署失败。参考以下方式解决: 如果是在公共资源池部署服务,可等待其他用户释放资源后,再进行服务部署。 如果是在专属资源池部署服务,在满足模型需求的前提下
b0745d9d6/server-linux-x64/stable 将下载的vscode-server-linux-x64.tar.gz,上传到ModelArts实例的“/home/ma-user/work”目录下。 执行下面命令,并指定commitId(注意:直接在Notebo
自定义镜像模型部署为在线服务时出现异常 问题现象 在部署在线服务时,部署失败。进入在线服务详情页面,“事件”页签,提示“failed to pull image, retry later”,同时在“日志”页签中,无任何信息。 图1 部署在线服务异常 解决方法 出现此问题现象,通常
ssh 上传公钥到服务器。 例如用户名为root,服务器地址为192.168.222.213,则将公钥上传至服务器的命令如下: ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.222.213 通过如下命令可以看到客户端写入到服务器的id_rsa
b0745d9d6/server-linux-x64/stable 将下载的vscode-server-linux-x64.tar.gz,上传到ModelArts实例的“/home/ma-user/work”目录下。 执行下面命令,并指定commitId(注意:直接在Notebo
|——megatron/ # 注意:该文件夹从Megatron-LM中复制得到 |——... 步骤二:资源安装 将资源上传至机器中,确保容器能够访问,并进入已创建的容器。 Python依赖包本地安装:进入pip文件所在的路径,并运行安装命令。如下列所示。 pip