检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
多模板分类工作流 工作流介绍 上传模板图片 定义预处理 框选参照字段 框选识别区 训练分类器 评估应用 部署服务 编辑应用 自定义字段类型 删除应用 父主题: 文字识别套件
文字识别套件 文字识别套件使用简介 使用单模板工作流开发应用 使用多模板工作流开发应用
参数 说明 SKU存储位置(OBS) SKU数据存储至OBS的桶和文件夹。 如果数据上传方式为“选择本地文件”,则自动将本地的SKU数据上传至OBS。 如果数据上传方式为选择OBS文件,即直接选择SKU数据存储在OBS的位置。 单击“SKU存储位置(OBS)”右侧输入框,在“SKU
可视化界面:全流程可视化。 全生命周期:从数据标注、模型训练、服务部署、增量更新的全生命周期。 专属定制:根据场景数据自定制模型 。 高效的行业算法 多行业:积累10+行业/场景的预训练模型。 高精度:大部分模型的准确率高于90%。 少数据:训练所需的数据量更少。 智能标注:提升标注效率。
自然语言处理套件 行业套件介绍 新建应用 通用文本分类工作流 多语种文本分类工作流 通用实体抽取工作流 更新应用版本 查看应用详情 监控应用 删除应用
视觉套件 行业套件介绍 新建应用 零售商品识别工作流 热轧钢板表面缺陷检测工作流 云状识别工作流 刹车盘识别工作流 无监督车牌检测工作流 第二相面积含量测定工作流 通用图像分类工作流 更新应用版本 查看应用详情 监控应用 管理设备 删除应用
HiLens套件 行业套件介绍 新建可训练技能 HiLens安全帽检测技能 更新应用版本 查看应用详情 删除技能
Key ID/Secret Access Key)即访问密钥,包含访问密钥ID(AK)和秘密访问密钥(SK)两部分,华为云通过AK识别用户的身份,通过SK对请求数据进行签名验证,用于确保请求的机密性、完整性和请求者身份的正确性。 登录访问密钥页面,依据界面操作指引,获取AK、SK
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在自然语言处理套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型交并比和误差变化。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并已执行完“数据标注”步骤,详情请见标注数据。 训练模型 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 前提条件 已在自然语言处理套件控制台选择“多语种文本分类工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预
本样例填写“test”。 描述 数据集简要描述。 - 数据集状态 上传的训练数据可以是已标注的数据,也可以是未标注的数据。 您可以根据自身业务选择“数据集状态”是“已标注数据集”还是“未标注数据集”。 数据集模板可在选择“数据集状态”后,单击下方的“文本分类已标注数据模板”或“文本分类未标注数据模板”,下载数据集模板至本地查看。
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预训
变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。