检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在notebook中使用performance advisor插件进行性能分析,源数据选择OBS并指定profiling所在的OBS路径。
process_parameter 否 String 图像缩略设置,同OBS缩略图设置,详见OBS缩略图设置。如:image/resize,m_lfit,h_200表示等比缩放目标缩略图并设置高度为200像素。 sample_state 否 String 样本状态。
可在ModelArts管理控制台,单击左侧“专属资源池”,在专属资源池列表中查看资源池ID。 --train-instance-type String 否 训练作业选择的资源规格。
sample_time String 样本加入到数据集时,会根据样本在OBS上的最后修改时间(精确到天)建立索引,此处可以根据此时间进行搜索。
job_start_file = "jobstart_hccl.json" # job_start_file_path 路径默认为 "/user/config/jobstart_hccl.json" job_start_file_path = rank_table_file_path.rsplit
job_start_file = "jobstart_hccl.json" # job_start_file_path 路径默认为 "/user/config/jobstart_hccl.json" job_start_file_path = rank_table_file_path.rsplit
安全边界 云服务的责任共担模型是一种合作方式,其中云服务提供商和云服务客户共同承担云服务的安全和合规性责任。这种模型是为了确保云服务的安全性和可靠性而设计的。 根据责任共担模型,云服务提供商和云服务客户各自有一些责任。云服务提供商负责管理云基础架构,提供安全的硬件和软件基础设施,并确保云基础架构的可用性
dest_path String 批量任务输出结果的OBS路径。例如:“https://xxx.obs.myhwclouds.com/res/”。 instance_count Integer 模型部署的实例数。
对于文件类型的资产,AI Gallery会将资产保存在AI Gallery官方的OBS桶内。 对于镜像类型的资产,AI Gallery会将资产保存在AI Gallery官方的SWR仓库内。 对于用户提供的一些个人信息,AI Gallery会保存在数据库中。
支持创建新版本 创建新版本,仅支持从ModelArts训练作业、OBS、模型模板、或自定义镜像中选择元模型。无法从原自动学习项目中,创建新版本。 支持删除模型或其模型版本 父主题: 使用窍门
10, "annotated_sample_count" : 10, "total_sub_sample_count" : 0, "annotated_sub_sample_count" : 0, "manifest_path" : "/test-obs
}, { "op" : "replace", "path" : "/config/0/additional_properties", "value" : { "persistent_volumes" : [ { "storage_type" : "obs_pfs
本文示例的代码目录为“obs://test-modelarts/ascend/code/”。 “启动命令” 镜像的Python启动命令。本文示例的启动命令为“bash ${MA_JOB_DIR}/code/run_torch_ddp_npu.sh”。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持
source_location String 模型所在的OBS路径或SWR镜像的模板地址。 source_job_id String 来源训练作业的ID。 source_copy String 镜像复制开关,仅当“model_type”为“Image”时有效。
登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署 > 在线服务”,进入在线服务管理页面。 开启支持APP认证功能。 在部署为在线服务时,即“部署”页面,填写部署服务相关参数时,开启支持APP认证功能。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite DevServer上的微调方案,包括sft全参和lora 微调。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署