检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Snt9b单卡规格,配搭ARM处理器,适合深度学习场景下的模型训练和调测 ModelArts提供了面向推理迁移工作的预置镜像,其中包含了最新商用版驱动、昇腾软件开发库,迁移工具链等。预置镜像可以做到即开即用,用户也可以基于预置镜像构建自定义环境内容。 ModelArts支持的昇腾迁移预置镜像如下:
页面,开启“自动重启”开关。训练环境预检测失败、或者训练容器硬件检测故障、或者训练作业失败时会自动重新下发并运行训练作业。 PyTorch版reload ckpt PyTorch模型保存有两种方式。 仅保存模型参数 state_dict = model.state_dict() torch
Service,并且提供在线的测试UI与监控能力,服务一直保持运行。 batch为批量服务,批量服务可对批量数据进行推理,完成数据处理后自动停止。 edge表示边缘服务,通过华为云智能边缘平台,在边缘节点将模型部署为一个Web Service,需提前在IEF(智能边缘服务)创建好节点。 vpc_id 否 String
目录时,系统在训练作业启动前,自动将数据存储位置中的Checkpoint文件下载到训练容器的本地目录。 图1 训练输出设置 PyTorch版reload ckpt PyTorch模型保存有两种方式。 仅保存模型参数 state_dict = model.state_dict() torch
ADD run.sh /home/mind/ CMD /bin/bash /home/mind/run.sh 完成镜像构建后,将镜像注册至华为云容器镜像服务SWR中,用于后续在ModelArts上部署推理服务。 使用适配后的镜像在ModelArts部署在线推理服务。 在obs中创
是否使用chatglm4-9b、falcon-11b模型。 是,更新配置或命令。 chatglm4-9b,更新transformers为4.41.2版本。 pip install transformers==4.41.2 falcon-11b,参考falcon-11B模型替换文件。 否,忽略此步骤,执行下一步。
Error: No module named 'tyro'" 错误截图: 报错原因:未指定tyro依赖包版本,导致安装依赖为最新0.9.0版本导致与其他依赖冲突 解决措施:任务前容器内更新'tyro'版本为0.8.14或以下版本 pip install tyro==0.8.14 父主题:
Error: No module named 'tyro'" 错误截图: 报错原因:未指定tyro依赖包版本,导致安装依赖为最新0.9.0版本导致与其他依赖冲突 解决措施:任务前容器内更新'tyro'版本为0.8.14或以下版本 pip install tyro==0.8.14 父主题:
No module named 'multipart'"报错: 截图如下: 解决措施:可更新python-multipart为0.0.12版本,具体步骤如下: 启动训练任务前更新python-multipart版本: pip install python-multipart==0
行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containerd/nerdctl/releases/download/v1.7.6/nerdctl-1
行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containerd/nerdctl/releases/download/v1.7.6/nerdctl-1
行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containerd/nerdctl/releases/download/v1.7.6/nerdctl-1
行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containerd/nerdctl/releases/download/v1.7.6/nerdctl-1
荐在条件允许的前提下配套安装最新商发版本的昇腾开发套件CANN Toolkit、昇腾驱动以及torch_npu包。具体操作,请参考昇腾商用版资源下载指导。 数据集。 需要排查是否使用的训练数据集存在差异。 初始权重。 需要排查是否加载的初始权重有差异,建议加载相同的初始权重。 父主题:
Error: No module named 'tyro'" 错误截图: 报错原因:未指定tyro依赖包版本,导致安装依赖为最新0.9.0版本导致与其他依赖冲突 解决措施:任务前容器内更新'tyro'版本为0.8.14或以下版本 pip install tyro==0.8.14 问题7:训练过程中报“an
安装过程预计1~2分钟,安装完成后右下角会弹出对话框,请单击“Reload Window and Open”。 本文以VS Code 1.78.2版本的操作为例,其他版本的VS Code可能不会弹出“Reload Window and Open”,请直接执行5。 图6 Reload Window
部署:将模型发布为在线服务、批量服务或边缘服务。 发布:将模型发布至AI Gallery,详情请参见发布ModelArts模型。 删除:针对模型的某一版本进行删除。 查看模型详情 当模型创建成功后,您可以进入模型详情页查看模型的信息。 登录ModelArts管理控制台,在左侧菜单栏中选择“模型管理”,进入“自定义模型”列表页面。
String 训练作业的日志OBS输出路径URL,默认为空。如:“/usr/train/”。 pre_version_id 是 Long 训练作业前一版本的ID。 可通过查询训练作业版本列表 中查找“version_id”。 user_image_url 否 String 自定义镜像训练作业
$PYTHON_SCRIPT \ $PYTHON_ARGS " echo $CMD $CMD torchrun.sh内容如下: PyTorch 2.1版本需要将“rdzv_backend”参数设置为“static:--rdzv_backend=static”。 #!/bin/bash # 系统默认环境变量,不建议修改
性能benchmark验证使用到的脚本存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目录中。 代码目录如下: benchmark_tools ├── benchmark_parallel.py # 评测静态性能脚本 ├──