检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
设置候选提示词 用户可以将效果较好的提示词设为候选提示词,并对提示词进行比对,以查看其效果。 每个工程任务下候选提示词上限9个,达到上限9个时需要删除其他候选提示词才能继续添加。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发
导入数据至盘古平台 数据集是一组用于处理和分析的相关数据样本。存储在OBS服务中的数据或本地数据导入ModelArts Studio大模型开发平台后,将以数据集的形式进行统一管理。 用户将数据导入至平台后,这些数据会生成一个“原始数据集”,用于对导入的数据进行集中管理和进一步操作。
上线标注后的文本类数据集 数据集标注完成并且审核无问题后,需要对该数据集执行上线操作。上线后的数据集可以用于后续的数据评估、发布任务。 上线标注后的数据集步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
上线标注后的视频类数据集 数据集标注完成并且审核无问题后,需要对该数据集执行上线操作。上线后的数据集可以用于后续的数据评估、发布任务。 上线标注后的数据集步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
数据集评估场景介绍 数据评估概念 数据评估旨在通过对数据集进行系统的质量检查,评估其准确性、完整性、一致性和代表性等多个维度,发现潜在问题并加以解决。 在构建和使用数据集的过程中,数据评估是确保数据质量的关键步骤,直接影响模型的性能和应用效果。高质量的数据集能够显著提升模型的准确
获取模型部署ID 模型部署ID获取步骤如下: 登录ModelArts Studio大模型开发平台。 获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图1
请求URI 服务的请求URI即API服务的终端地址,通过该地址与API进行通信和交互。 URI获取步骤如下: 登录ModelArts Studio大模型开发平台。 进入所需工作空间。 获取请求URI。 获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 >
发布文本类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 文本类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 自定义格式:文本类数据集可以使用自定义脚本进行数据格式转换。
配置Prompt builder 创建Agent的首要步骤就是撰写提示词(Prompt),为Agent设定人设、目标、核心技能、执行步骤。Agent会根据LLM对提示词的理解,来选择使用插件或知识库,响应用户问题。因此,一个好的提示词可以让LLM更好的理解并执行任务,Agent效果与提示词息息相关。
管理科学计算大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型和修改作业配置参数,但在修改部署时模型不可替换或修改作业配置参数。 在“模型更新”或“修改部署”
发布视频类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 视频类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
数据集标注场景介绍 数据标注概念 数据标注是数据工程中的关键步骤,旨在为无标签的数据集添加准确的标签,从而为模型训练提供有效的监督信号。标注数据的质量直接影响模型的训练效果和精度,因此高效、准确的标注过程至关重要。数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途。
管理盘古模型资产 模型资产介绍 用户在平台中可试用、订购或训练后发布的模型,将被视为模型资产并存储在空间资产内,方便统一管理与操作。用户可以查看模型的所有历史版本及操作记录,从而追踪模型的演变过程。同时,平台支持一系列便捷操作,包括模型训练、压缩和部署,帮助用户简化模型开发及应用
创建提示词评估任务 选择候选提示词进行批量自动化评估,步骤如下:。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。
发布其他类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 其他类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
数据工程 ModelArts Studio大模型开发平台提供了全面的数据工程功能,支持从数据源导入到数据质量控制的全流程管理。该模块涵盖数据获取、加工、标注、评估和发布等关键环节,帮助用户高效构建高质量的训练数据集,推动AI应用的成功落地。具体功能如下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts
管理NLP大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型,但在修改部署时模型不可替换。 在“模型更新”或“修改部署”后进行升级操作时,可选择全量升级或滚动升级两种方式:
发布预测类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 预测类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
发布气象类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 气象类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
创建文本类数据集评估标准 ModelArts Studio大模型开发平台针对文本数据集预设了一套基础评估标准,涵盖了数据准确性、完整性、一致性、格式规范等多个维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建文本类数据集评估任务。