检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Downloading VS Code Server locally"超过10分钟以上,如何解决? 问题现象 原因分析 当前本地网络原因,导致远程自动安装VS Code Server时间过长。 解决方法 打开VS Code,选择“Help>About”,并记下“Commit”的ID码。 确认
self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错 使用autoAWQ进行qwen
self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错 使用autoAWQ进行qwen
output_path /home/ma-user/work 否 advisor分析结果输出路径,包含html和xlsx两个文件。 如果您想修改参数配置,可以点开Advanced Settings选项开关,然后对参数进行新增或修改。界面参考下图。 图7 修改高级参数 查看性能诊断任务结果。
ModelArts Notebook的详细资料请查看Notebook使用场景介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界
ModelArts Notebook的详细资料请查看Notebook使用场景介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界
原因分析二 本地系统为Linux,由于使用root用户安装VS Code,打开VS Code显示信息It is not recommended to run Code as root user 解决方法二 请使用非root用户安装VS Code后,回到ModelArts控制台界面再次单击界面上的“VS
self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错 使用autoAWQ进行qwen
ModelArts的Notebook是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf
“名称”:设置此任务的名称。 “标注场景”:选择标注作业的任务类型。 “标签集”:展示当前数据集已有的标签及标签属性。 “启用团队标注”:选择打开,并配置如下团队标注相关参数。 “类型”:设置任务类型,支持“指定标注团队”或“指定标注管理员”。 “选择标注团队”:任务类型设置为“指定标注团队
型开发、训练、管理、部署功能,可灵活使用其中一个或多个功能。 支持本地IDE+ModelArts 插件远程开发能力,线上线下协同开发,开发训练一体化架构,支持大模型分布式部署及推理。 统一管理AI开发全流程,提升开发效率,记录模型构建实验全流程。 多场景部署,灵活满足业务需求 支持云端/边端部署等多种生产环境。
Code。VS Code安装请参考安装VS Code软件。 图4 下载并安装VS Code 如果用户之前未安装过ModelArts VS Code插件,此时会弹出安装提示,请单击“Install and Open”进行安装;如果之前已经安装过插件,则不会有该提示,请跳过此步骤,直接执行5。 图5
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界
可能系统资源不足、如内存不足、内存泄露。 硬件故障、如IB网络或者GPU互联设备故障等。 没安装nvidia-fabricmanager组件或被误卸载。 处理方法 如果未安装fabricmanager,则需安装改组件。 如果已安装fabricmanager,运行以下命令重启fabricmanager.service。
Gallery、发布数据集到AI Gallery。对于支持部署为AI应用的AI Gallery模型,可将此模型部署为AI应用,具体可参见将AI Gallery中的模型部署为AI应用。 发布后的资产,可通过微调大师训练模型和在线推理服务部署模型,具体可参见使用AI Gallery微调大师训练模型、使用AI
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
但是达不到预期,可能是nv_peer_mem异常。 处理方法 查看nv_peer_mem是否已安装。 dpkg -i | grep peer 如果未安装则需要安装,安装方法参考装机指导。 如果已安装则进入下一检测项。 查看该软件是否已经加载至内核。 lsmod | grep peer
ch环境或没有安装Cuda的镜像,而不是选择一个PyTorch引擎和Cuda都不满足的镜像,如MindSpore+Cuda11.X,这样基础镜像就会很大,同样的操作最终目的镜像就很大。 此外下面举出几种常见的减少镜像大小的方式。 减少目的镜像层数 举例:假设需要安装两个pip包s
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh