检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Lite Cluster使用流程 ModelArts Lite Cluster面向k8s资源型用户,提供托管式k8s集群,并预装主流AI开发插件以及自研的加速插件,以云原生方式直接向用户提供AI Native的资源、任务等能力,用户可以直接操作资源池中的节点和k8s集群。本文旨在帮助您了解
在ModelArts的Notebook中使用MoXing时,如何进行增量训练? 在使用MoXing构建模型时,如果您对前一次训练结果不满意,可以在更改部分数据和标注信息后,进行增量训练。 “mox.run”添加增量训练参数 在完成标注数据或数据集的修改后,您可以在“mox.run”
自定义引擎创建模型规范 使用自定义引擎创建模型,用户可以通过选择自己存储在SWR服务中的镜像作为模型的引擎,指定预先存储于OBS服务中的文件目录路径作为模型包来创建模型,轻松地应对ModelArts平台预置引擎无法满足个性化诉求的场景。 ModelArts将自定义引擎类型的模型部署为服务时
投机推理使用说明 什么是投机推理 传统LLM推理主要依赖于自回归式(auto-regressive)的解码(decoding)方式,每步解码只能够产生一个输出token,并且需要将历史输出内容拼接后重新作为LLM的输入,才能进行下一步的解码。为了解决上述问题,提出了一种投机式推理方式
权限管理 ModelArts作为一个完备的AI开发平台,支持用户对其进行细粒度的权限配置,以达到精细化资源、权限管理之目的。这类特性在大型企业用户的使用场景下很常见,但对个人用户则显得复杂而意义不足,所以建议个人用户在使用ModelArts时,参照配置访问授权来进行初始权限设置。
执行训练任务(推荐) 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
ModelArts权限管理基本概念 ModelArts作为一个完备的AI开发平台,支持用户对其进行细粒度的权限配置,以达到精细化资源、权限管理之目的。这类特性在大型企业用户的使用场景下很常见,但对个人用户则显得复杂而意义不足,所以建议个人用户在使用ModelArts时,参照个人用户快速配置
在ModelArts Standard上运行GPU单机多卡训练作业 操作流程 准备工作: 购买服务资源(VPC、SFS、SWR和ECS) 配置权限 创建专属资源池(打通VPC) 在ECS服务器挂载SFS Turbo存储 在ECS中设置ModelArts用户可读权限 安装和配置OBS
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
投机推理使用说明 什么是投机推理 传统LLM推理主要依赖于自回归式(auto-regressive)的解码(decoding)方式,每步解码只能够产生一个输出token,并且需要将历史输出内容拼接后重新作为LLM的输入,才能进行下一步的解码。为了解决上述问题,提出了一种投机式推理方式
执行训练任务(推荐) 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作
依赖和委托 功能依赖 功能依赖策略项 您在使用ModelArts的过程中,需要和其他云服务交互,比如需要在提交训练作业时选择指定数据集OBS路径和日志存储OBS路径。因此管理员在为用户配置细粒度授权策略时,需要同时配置依赖的权限项,用户才能使用完整的功能。 如果您使用根用户(与账户同名的缺省子用户
查看ModelArts模型详情 查看模型列表 当模型创建成功后,您可在模型列表页查看所有创建的模型。模型列表页包含以下信息。 表1 模型列表 参数 说明 模型名称 模型的名称。 最新版本 模型的当前最新版本。 状态 模型当前状态。 部署类型 模型支持部署的服务类型。 版本数量 模型的版本数量
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备ascend_vllm代码包、模型权重文件、推理启动脚本run_vllm.sh
自定义镜像使用场景 在AI业务开发以及运行的过程中,一般都会有复杂的环境依赖需要进行调测并固化。面对开发中的开发环境的脆弱和多轨切换问题,在ModelArts的AI开发最佳实践中,通过容器镜像的方式将运行环境进行固化,以这种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换。
创建Workflow模型注册节点 功能介绍 通过对ModelArts模型管理的能力进行封装,实现将训练后的结果注册到模型管理中,便于后续服务部署、更新等步骤的执行。主要应用场景如下: 注册ModelArts训练作业中训练完成的模型。 注册自定义镜像中的模型。 属性总览 您可以使用ModelStep
在ModelArts Standard上运行GPU多机多卡训练作业 操作流程 准备工作: 购买服务资源(VPC/SFS/OBS/SWR/ECS) 配置权限 创建专属资源池(打通VPC) ECS服务器挂载SFS Turbo存储 在ECS中设置ModelArts用户可读权限 安装和配置
pipeline代码适配 onnx pipeline的主要作用是将onnx模型进行一系列编排,并在onnx Runtime上按照编排顺序执行。因此,需要将转换得到的mindir模型按照相同的逻辑进行编排,并在MindSpore Lite上执行。只需要将原始onnx的pipeline