检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
分析ModelArts数据集中的数据特征 基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 您还可以选择数据集的多个版本,查看其可视化曲线,进行对比分析。 背景信息 只有“图片”的数据集,且版本标注类型为“物体检测”和“图像分类”的数据集版本支持数据特征分析。
导出ModelArts数据集中的数据为新数据集 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。本章主要介绍将ModelArts数据集中的数据为新数据集的方式,新导出的数据集可直接在ModelArts控制台数据集列表中显示。
在ModelArts的Notebook中如何在代码中打印GPU使用信息? 用户可通过shell命令或python命令查询GPU使用信息。 使用shell命令 执行nvidia-smi命令。 依赖CUDA nvcc watch -n 1 nvidia-smi 执行gpustat命令。
动态shape 在某些推理场景中,模型输入的shape可能是不固定的,因此需要支持用户指定模型的动态shape,并能够在推理中接收多种shape的输入。在CPU上进行模型转换时无需考虑动态shape问题,因为CPU算子支持动态shape;而在Ascend场景上,算子需要指定具体的
查询训练作业镜像保存任务 功能介绍 查询训练作业镜像保存任务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/traini
发布Workflow到AI Gallery Workflow支持发布到AI Gallery,分享给其他用户使用,执行如下代码即可完成发布。 workflow.release_to_gallery() 发布完成后可前往gallery查看相应的资产信息,资产权限默认为private,可在资产的console页面自行修改。
分布式训练功能介绍 ModelArts提供了如下能力: 丰富的官方预置镜像,满足用户的需求。 支持基于预置镜像自定义制作专属开发环境,并保存使用。 丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/J
创建训练作业镜像保存任务 功能介绍 创建训练作业镜像保存任务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/train
解析Pascal VOC文件 解析xml文件支持本地和OBS,如果是OBS,需要Session信息。 PascalVoc.parse_xml(xml_file_path, session=None) 示例代码 指定xml路径,通过调用parse_xml来解析获取xml文件的信息。
模型的最大长度,默认为2048 --dtype str 模型dtype,默认为bfloat16 执行完成后,记得unset环境变量,否则会导致后续推理服务启动出错。 unset EAGLE_TARIN_MODE 执行完成后,如果used_npus>1,则需要将训练生成data数据重新分配为8
执行训练任务(推荐) 新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根据自己实际需求进行修改。推荐用户使用该方式进行训练。 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训
在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel? 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1
训练数据集预处理说明 以 llama2-13b 举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据集预处理,并检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行训练任务。若未进行数据集预处理,则会自动执行 scripts/llam
训练的数据集预处理说明 以 llama2-13b 举例,使用训练作业运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
在ModelArts的Notebook中使用MoXing时,如何进行增量训练? 在使用MoXing构建模型时,如果您对前一次训练结果不满意,可以在更改部分数据和标注信息后,进行增量训练。 “mox.run”添加增量训练参数 在完成标注数据或数据集的修改后,您可以在“mox.run
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 若已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 若已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
训练的数据集预处理说明 以 llama2-13b 举例,使用训练作业运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
训练的数据集预处理说明 以 llama2-13b 举例,使用训练作业运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data