检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
deleteTable(tableName);//注[1] } LOG.info("Drop table successfully."); } catch (IOException e) { LOG.error("Drop table failed
提供Spark的各种功能,如连接Spark集群,创建RDD,累积量和广播量等。它的作用相当于一个容器。 SparkConf:Spark应用配置类,如设置应用名称,执行模式,executor内存等。 JavaRDD:用于在java应用中定义JavaRDD的类,功能类似于scala中的RDD(Resilient
提供Spark的各种功能,如连接Spark集群,创建RDD,累积量和广播量等。它的作用相当于一个容器。 SparkConf:Spark应用配置类,如设置应用名称,执行模式,executor内存等。 JavaRDD:用于在java应用中定义JavaRDD的类,功能类似于scala中的RDD(Resilient
com/huaweicloud/huaweicloud-sdk-go-v3/services/mrs/v2" "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/mrs/v2/model" region "github.com
提供Spark的各种功能,如连接Spark集群,创建RDD,累积量和广播量等。它的作用相当于一个容器。 SparkConf:Spark应用配置类,如设置应用名称,执行模式,executor内存等。 JavaRDD:用于在java应用中定义JavaRDD的类,功能类似于scala中的RDD(Resilient
request. table.delete(delete); LOG.info("Delete table successfully."); } catch (IOException e) { LOG.error("Delete table
LOG.info("result is : " + strBuffer.toString()); LOG.info("success to read."); } finally { // make sure the streams are closed
LOG.info("result is : " + strBuffer.toString()); LOG.info("success to read."); } finally { // make sure the streams are closed
LOG.info("result is : " + strBuffer.toString()); LOG.info("success to read."); } finally { // make sure the streams are closed
request. table.delete(delete); LOG.info("Delete table successfully."); } catch (IOException e) { LOG.error("Delete table
request. table.delete(delete); LOG.info("Delete table successfully."); } catch (IOException e) { LOG.error("Delete table
admin.deleteTable(tableName); } LOG.info("Drop table successfully."); } catch (IOException e) { LOG.error("Drop table
[TBLPROPERTIES ('column.encode.columns'='col_name1,col_name2'| 'column.encode.indices'='col_id1,col_id2','column.encode.classname'='encode_classname')]...;
request. table.delete(delete); LOG.info("Delete table successfully."); } catch (IOException e) { LOG.error("Delete table
LOG.info("result is : " + strBuffer.toString()); LOG.info("success to read."); } finally { // make sure the streams are closed
[TBLPROPERTIES ('column.encode.columns'='col_name1,col_name2'| 'column.encode.indices'='col_id1,col_id2','column.encode.classname'='encode_classname')]...;
case scan: CarbonDataSourceScan if scan.rdd.isInstanceOf[CarbonScanRDD[InternalRow]] => scan.rdd case scan: RowDataSourceScanExec if scan.rdd.i
case scan: CarbonDataSourceScan if scan.rdd.isInstanceOf[CarbonScanRDD[InternalRow]] => scan.rdd case scan: RowDataSourceScanExec if scan.rdd.i
code 2” 问题现象 执行语句select count(*) from XXX;时客户端报错: Error:Error while processing statement :FAILED:Execution Error,return code 2 from ... 这个报错return
含的文件数量很多时,串行读取Split信息变得缓慢,影响性能。故对此做了优化,当表包含的文件大于一定阈值(即spark.sql.sources.parallelSplitDiscovery.threshold参数值)时,会生成一个Job,利用Executor的并行能力去读取,从而提升执行效率。