检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查找元数据 在“元数据管理”页面,您可以在搜索框中输入元数据文件的名称进行查找。 图1 查找元数据 父主题: 元数据操作
新建数据迁移任务 前提条件 已确认数据源数据库中各表对应的点边类型。 操作步骤 登录图引擎服务管理控制台,在左侧导航栏中选择“数据迁移”。 在“数据迁移”页签单击“新建”。 图1 新建数据迁移 设置数据源配置参数。 任务名称:自定义名称,不能与已有任务名称重复,长度在4位到50位
实时查询 在运维监控页面左侧导航栏单击“监控>实时查询”,进入实时查询页面,将会展示了当前运行在实例中的所有查询的实时信息。在该页面,您可以根据选择的指定时间段浏览实例中正在运行的所有查询信息。其中包括:请求ID、任务名称、请求参数、进度(内存版)、阻塞时长(内存版)、开始时间、结束时间、运行时长。
Node2vec算法 概述 Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1
共同邻居算法(Common Neighbors) 概述 共同邻居算法(Common Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景
括条件键和运算符,条件键表示策略语句的 Condition 元素,分为全局级条件键和服务级条件键。全局级条件键(前缀为g:)适用于所有操作,服务级条件键(前缀为服务缩写,如ges)仅适用于对应服务的操作。运算符与条件键一起使用,构成完整的条件判断语句。 GES通过IAM预置了一组
导入IAM用户 您需要在“导入IAM用户”弹框中,填写需要添加的IAM用户ID和IAM用户名,填写完成后单击“确定”,系统将会帮您在GES服务中添加该IAM用户,以便在用户组配置中能够选择该IAM用户。 图4 填写IAM用户信息 父主题: 配置图操作权限
查看创建失败的图 当GES依赖的ECS服务的配额不足时,会出现创建图失败的情况,您可以在“图管理”页面查看创建失败的图。 操作步骤 在左侧导航栏,选择“图管理”。 在“图管理”页面中,左上角的“图管理”页签旁可以看到当前创建图失败的图数量。 图1 创图失败的图数量 单击可查看创建
性能监控 在运维监控页面左侧导航栏单击“监控>性能监控”,进入性能监控页面。在性能监控页面展示以下这些性能指标的趋势,其中包括: CPU使用率(%) 内存使用率(%) 磁盘使用率(%) 磁盘I/O(KB/s) 网络I/O(KB/s) tomcat连接数使用率(%) swap盘使用率(内存版)
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
子图匹配(Subgraph Matching) 概述 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 适用场景 子图匹配(subgraph matching)算法适用于
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
时序路径分析(Temporal Paths) 概述 时序路径分析算法(Temporal Paths)区别于静态图上的路径分析,结合了动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边,呈现时间递增(或非减)性。 时序路径不满足传递性:即从节点i到节点j有一条时
标签传播算法(Label Propagation) 概述 标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点
关联路径算法(n-Paths) 概述 关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型
历史查询 在运维监控页面左侧导航栏单击“监控>历史查询”,进入历史查询页面,该页面展示了图实例历史上运行过的异步任务的详情(和业务面任务中心展示的一样)。 图1 历史查询页面 父主题: 监控
可以从中获取有关图实例的状态以及可用资源数量等,并深入了解当前实例实时的资源消耗情况。 图引擎服务(GES)相关监控项指标,具体请参见表 图引擎服务(GES)监控列表。 表1 图引擎服务(GES)监控列表 监控对象 指标名称 含义 取值范围 监控周期(原始指标) 实例概览指标 集群信息
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness