检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
欠费后,ModelArts的资源是否会被删除? 欠费后,ModelArts的资源不会被立即删除。 欠费后,您可以在“费用中心”查看欠费详情。为了防止相关资源不会被停止服务或者逾期释放,您需要及时进行还款或充值。 查询欠费步骤 登录管理控制台。 单击页面右上角的“费用”进入“费用中心”页面。 在“总览”页面可以查看到当前的欠费金额。
集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train.sh 启动SDXL LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_sdxl_lora_train
ype类型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8_pertensor #只支持int8,表示kvint8
5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh run_lora.sh 所有数据保存在auto_log/avg_step_time.txt文本中 auto_log/log/目录下存放各个shapes的数据。 启动SDXL LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。
属资源池上的,包括“训练”、“推理”服务及“Notebook”开发环境。 专属资源池提供了动态设置作业类型的功能,您可以在创建资源池时、创建完成后,对资源池支持的作业类型进行编辑(新增或减少)。当前支持的“作业类型”有“训练作业”、“推理服务”和“开发环境”,用户可按需自行选择。
微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中 {instruction}、{input}、{output} 分别对应数据集中 instruction、input、output
微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中 {instruction}、{input}、{output} 分别对应数据集中 instruction、input、output
规范,否则该模型无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 当托管的是自定义镜像时,上传的模型文件要满足自定义镜像规范,否则该镜像无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 当文件状态变成“上传成功”表示数据文件成功上传至AI
_pretrain_70b.sh <MASTER_ADDR=xx.xx.xx.xx> <NNODES=4> <NODE_RANK=0> apiVersion: batch.volcano.sh/v1alpha1 kind: Job ... spec:
3fn"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
--per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考步骤六 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16
3fn"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
--per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant 父主题:
--per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step6 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant 父主题:
3fn"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
--per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考步骤六 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
甚至更大。 执行推理参考 Ascend vllm使用Chunked Prefill特性需参考表1,其它参数请参考启动推理服务。 启动推理服务请参考启动推理服务。 父主题: 推理关键特性使用
微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中 {instruction}、{input}、{output} 分别对应数据集中 instruction、input、output
微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中 {instruction}、{input}、{output} 分别对应数据集中 instruction、input、output