检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Array of ObsStorageDto objects 输入数据的OBS信息。 表4 ObsStorageDto 参数 参数类型 描述 bucket String 输入数据的OBS桶名称。 path String 初始场数据的存放路径。 表5 TaskOutputDto 参数 参数类型
气象类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类加工算子能力清单
应用,快速体验智能化应用的便捷性。 平台提供导入知识功能,支持用户存储和管理数据,并与AI应用进行互动。支持多种格式的本地文档(如docx、pptx、pdf等),方便导入至知识,为Agent应用提供个性化数据支持。 平台还提供全链路信息观测和调试工具,支持开发者深入分析Agent
它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函
导入数据过程中,为什么无法选中OBS的具体文件进行上传 在数据导入过程中,平台仅支持通过OBS服务导入文件夹类型的数据,而不支持直接导入单个文件。 您需要将文件整理到文件夹中,并选择该文件夹进行上传。 父主题: 大模型使用类问题
Array of ObsStorageDto objects 输入数据的OBS信息。 表4 ObsStorageDto 参数 参数类型 描述 bucket String 输入数据的OBS桶名称。 path String 初始场数据的存放路径。 表5 TaskOutputDto 参数 参数类型
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。
上传文件限xlsx格式。 数据行数不小于10行,不大于50行。 数据不允许相同表头,表头数量小于20个。 数据单条文本长度不超过1000。 创建数据集时会对相关限制条件进行校验。 数据参考格式如下: 图1 数据参考格式 图2 数据示例 创建提示词评估数据集 登录ModelArts
Studio大模型开发平台中,使用数据工程构建盘古NLP大模型数据集流程见表2。 表2 盘古NLP大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建原始数据集 数据集是指用于模型训练或评测的一组相关数据样本,上传至平台的数据将被创建为原始数据集进行统一管理。 创建原始数据集 上线原始数据集
从而快速构建Agent。 工作流方式主要面向目标任务包含多个复杂步骤、对输出结果成功率和准确率有严格要求的复杂业务场景。 父主题: 创建与管理工作流
> 数据发布”,单击界面右上角“创建发布数据集”。 在“创建发布数据集”页面,选择“其他”类型的数据集,当前可选“自定义”类型的数据。 图2 创建其他类数据集发布任务 当前其他类数据集仅支持发布默认格式,选择好数据集的发布格式后,单击“下一步”。 设置数据集的“资产可见性”,填写数
数据集标注场景介绍 数据标注概念 数据标注是数据工程中的关键步骤,旨在为无标签的数据集添加准确的标签,从而为模型训练提供有效的监督信号。标注数据的质量直接影响模型的训练效果和精度,因此高效、准确的标注过程至关重要。数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途。
图6 评估数据集质量 在评估页面,可参考评估项对当前数据的问题进行标注,且不满足时需要单击“不通过”,满足则单击“通过”。对于文本类数据集而言,可选择问题内容后,单击鼠标右键进行数据问题的标注。 图7 标记数据集问题 全部数据评估完成后,评估状态显示为“100%”,表示当前数据集已经
ObsStorageDto objects 输入数据的OBS信息。 表5 ObsStorageDto 参数 是否必选 参数类型 描述 bucket 是 String 输入数据的OBS桶名称。 path 是 String 初始场数据的存放路径。 表6 TaskOutputDto 参数
获取视频类数据集评估报告 ModelArts Studio大模型开发平台提供了详细的质量评估报告,帮助用户全面了解数据集的质量情况。获取数据集评估报告步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 >
创建视频类数据集评估任务 创建视频类数据集评估任务前,请先完成创建视频类数据集加工任务。 创建视频类数据集评估任务步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据评估 > 评估任务”,单击界面右上角“创建评估任务”。
据集评估任务。 创建视频类数据集评估标准步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据评估 > 评估标准”,平台预置的文本类数据集评估标准“视频数据质量标准 V1.0”,单击评估标准名称,可以查看具体的评估项。
数据发布”,单击界面右上角“创建发布数据集”。 在“创建发布数据集”页面,选择“预测”类型的数据集。并根据训练任务场景选择“时序”、“回归分类”类型的数据。 图2 创建预测类数据集发布任务 当前预测类数据集仅支持发布默认格式,选择好数据集的发布格式后,单击“下一步”。 设置数据集
加工视频类数据集 创建视频类数据集加工任务 上线加工后的视频类数据集 父主题: 加工数据集
加工气象类数据集 创建气象类数据集加工任务 上线加工后的气象类数据集 父主题: 加工数据集