检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Lite又分以下2种形态: ModelArts Lite Server提供不同型号的xPU裸金属服务器,您可以通过弹性公网IP进行访问,在给定的操作系统镜像上可以自行安装加速卡相关的驱动和其他软件,使用SFS或OBS进行数据存储和读取相关的操作,满足算法工程师进行日常训练的需要。请参见弹性裸金属Lite
为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 确认信息填写无误,单击“立即创建”,完成模型的创建。 在模型列表中,您可以查看刚创建的模型及其对应的版本。当模型状态变更为“正常”时,表示模型导入成功。在此页面,您还可以创建新版本、快速部署服务、发布模型等操作。 后续操作
yaml文件中默认配置,权重使用表1 模型权重中指定的Huggingface地址,数据指定data.tgz里面提供的gsm8k和mmlu、ceval数据。 查看精度结果 任务完成之后会在test-benchmark目录下生成excel表格: 精度结果 LLaMAFactory_train_accu
rainJob:setHighPriority”并选中,所有资源选择默认值。 在统一身份认证服务页面的左侧导航选择“用户组”,在用户组页面查找待授权的用户组名称,在右侧的操作列单击“授权”,勾选步骤2创建的自定义策略,单击“下一步”,选择授权范围方案,单击“确定”。 此时,该用户组下的所有用户均有权限通过Cloud
包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
包结构说明。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_lora_7b.sh 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_sft_7b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_lora_7b.sh 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
标签,同时可在下拉菜单中选择标签“快捷键”。单击“确定”,完成选中音频的标注操作。 当目录中所有音频都完成标注后,您可以在“已标注”页签下查看已完成标注的音频,或者通过右侧的“全部标签”列表,了解当前已完成的标签名称和标签数量。 同步或添加音频 在“数据标注”节点单击“实例详情”
待。当Notebook状态变为“运行中”时,表示Notebook已创建并启动完成。 在Notebook列表,单击实例名称,进入实例详情页,查看Notebook实例配置信息。 在Notebook中打开Terminal,输入启动命令调试代码。 # 建立数据集软链接 # ln -s /
声音分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
Key)加密调用请求。 Token认证 Token的有效期为24小时,需要使用同一个Token鉴权时,可以缓存起来,避免频繁调用。 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_sft_7b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
3指使用0-3卡执行训练任务。 训练成功标志 “***** train metrics *****”关键字打印 训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 1、如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_lora_7b.sh 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_sft_7b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_lora_7b.sh 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6