检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
6。 适配的CANN版本是cann_8.0.rc3。 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 支持的模型列表和权重文件 本方案支持vLLM的v0.6
if_then_steps表示的是当Condition比较的结果为true时允许执行的节点列表,存储的是节点名称;此时else_then_steps中的step跳过不执行。 else_then_step表示的是当Condition比较的结果为false时允许执行的节点列表,存储的是节点名称;此时
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
911软件包中的AscendCloud-AIGC-6.3.911-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量
ion的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
ModelArts提供了模型训练的功能,方便您查看训练情况并不断调整您的模型参数。您还可以基于不同的数据,选择不同规格的资源池用于模型训练。除支持用户自己开发的模型外,ModelArts还提供了从AI Gallery订阅算法,您可以不关注模型开发,直接使用AI Gallery的算法,通过算法参数的调整,得到一个满意的模型。
以满足不同场景下的用户需求。如您需要快速了解ModelArts服务不同计费模式的具体价格,请参见ModelArts价格详情。 包年/包月:一种预付费模式,即先付费再使用,按照订单的购买周期进行结算。购买周期越长,享受的折扣越大。一般适用于计算资源需求量长期稳定的成熟业务。 按需计
cuda版本 nvcc --version # nvidia-smi版本 nvidia-smi # torch版本(要确定用户用的哪个conda下的python) python -c "import torch;print(torch.__version__)" 通过pytor
当您需要在AI Gallery下架共享的资产时,可以执行如下操作: 在“AI Gallery”页面,选择“我的Gallery > 我的资产 > Notebook”,进入“我的Notebook”。 在“我的Notebook > 我的发布”页面,单击目标资产右侧的“下架”,在弹框中确认资产信息,单击“确定”完成下架。
模型训练是一个不断迭代和优化模型权重的过程。ModelArts的训练模块支持创建训练作业、查看训练情况以及管理训练版本。通过模型训练试验模型结构、数据和超参的各种组合,便于找到最佳的模型结构和权重。 创建生产环境的训练作业有2种方式: 通过ModelArts Standard控制台的方式创建生产环境的训练作业,详细操作请参考本章节以下内容。
针对您部署上线的服务,您可以在服务详情页面的“调用指南”中,了解本服务的输入参数,即上文提到的输入请求类型。 图1 查看服务的调用指南 调用指南中的输入参数取决于您选择的模型来源: 如果您的元模型来源于自动学习或预置算法,其输入输出参数由ModelArts官方定义,请直接参考“调
MaaS提供了基于昇腾云算力适配的开源大模型,您可以使用这些基础模型,结合推荐的模型权重文件或自定义的模型权重文件,创建个人专属的模型。 创建成功的模型可以在ModelArts Studio大模型即服务平台进行调优、压缩、推理等操作。 约束限制 用于生成专属模型的模型权重文件需要满足Hugging
产品优势 ModelArts服务具有以下产品优势。 稳定安全的算力底座,极快至简的模型训练 支持万节点计算集群管理 大规模分布式训练能力,加速大模型研发 提供高性价比国产算力 多年软硬件经验沉淀,AI场景极致优化 加速套件,训练、推理、数据访问多维度加速 一站式端到端生产工具链,一致性开发体验
top_k 否 -1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。
数据集输出位置:用来存放输出的数据标注的相关信息,如版本发布生成的Manifest文件等。单击图标选择OBS桶下的空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 数据集输入位置:用来存放源数据集信息,例如本案例中从Gallery下载的数据集。单击图标选择您的OBS桶下的任意一处目录,但不能与输出位置为同一目录。