检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
(可选)工作空间配置 模型训练 本地构建镜像及调试 上传镜像 上传数据和算法到OBS 使用Notebook进行代码调试 创建单机单卡训练作业 监控资源 本地构建镜像及调试 本节通过打包conda env来构建环境,也可以通过pip install、conda install等方式安装conda环境依赖。
synchronize_auto_labeling_data Boolean 团队标注任务是否同步智能标注结果。可选值如下: true:执行完智能标注后,将待确认结果同步至团队成员。 false:不同步智能标注结果(默认值)。 synchronize_data Boolean 团队标注任务是否同步更新新增数据。可选值如下:
全部为包年/包月计费模式。不支持部分节点为按需计费,部分节点为包年/包月计费。 操作步骤 登录管理控制台,单击左侧导航栏的图标,选择“人工智能 > ModelArts”。 在ModelArts列表页,选择“专属资源池 > 弹性集群”,选中目标专属资源池。在“操作 > 更多 > 转包周期”。
问题现象 训练作业运行出现如下报错: failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 原因分析 根据错误信息判断,报错原因为训练作业运行程序读取不到GPU。 处理方法 根
yaml --epoch_size=1 --device_target="CPU" 图7 配置PyCharm解释器 根据README说明文档,配置Parameter参数device_target="CPU"表示CPU环境运行,device_target="Ascend"表示在Ascend环境运行。
必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可
ModelArts专题 了解ModelArts 华为云开发者学堂 华为云EI基于AI和大数据技术,通过云服务的方式提供开放可信的平台。 智能客服 您好!我是有问必答知识渊博的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户的聚集地。这里有来自ModelArts服务的技术牛人,为您解决技术难题。
的名字、路径、后缀名都不满足训练算法的要求;图片也可能有部分损坏,造成无法解码、无法被算法处理的情况。因此,数据校验非常重要,可以帮助人工智能开发者提前发现数据问题,有效防止数据噪声造成的算法精度下降或者训练失败问题。 数据清洗:数据清洗是指对数据进行去噪、纠错或补全的过程。 数
file (RTF) 文件路径 ASCEND_DEVICE_ID:逻辑device_id,例如单卡训练,该值始终为 0 RANK_ID:可以理解为训练作业级的device逻辑(顺序)编号 RANK_SIZE:根据RTF中device的数目设置该值,例如4 * snt9b,该值即为4。
路径下。 ModelArts提供以下数据扩增算子: 表1 数据扩增算子介绍 算子 算子说明 高级 AddNoise 添加噪声,模拟常见采集设备在采集图片过程中可能会产生的噪声。 noise_type:添加噪声的分布类型,Gauss为高斯噪声,Laplace为拉普拉斯噪声,Pois
json文件格式(模板一)示例: { "server_count": "1", "server_list": [{ "device": [{ "device_id": "4", "device_ip": "192.1.10.254", "rank_id": "0" }], "server_id":
ddp_train(device_id): # create model and move it to GPU with id rank model = ToyModel().to(device_id) ddp_model = DDP(model, device_ids=[device_id])
device = torch.device('cuda') model.load_state_dict(torch.load(model_path, map_location="cuda:0")) else: device = torch
e-Instruct" 2)若量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True,
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
space left 日志文件的大小达到限制 日志提示"write line error" 日志提示“No space left on device” OOM导致训练作业失败 常见的磁盘空间不足的问题和解决办法 父主题: 训练作业