检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 方案概览
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
管理Notebook实例 查找Notebook实例 更新Notebook实例 启动/停止/删除实例 保存Notebook实例 动态扩充云硬盘EVS容量 动态挂载OBS并行文件系统 查看Notebook实例事件 Notebook Cache盘告警上报 父主题: 使用Notebook进行AI开发调试
附录:工作负载Pod异常问题和解决方法 Pod状态为Pending 当Pod状态长时间为“Pending”,事件中出现“实例调度失败”的信息时,可根据具体事件信息确定具体问题原因。 图1 pod状态pending 通过以下命令打印Pod日志信息。 kubectl describe
附录:工作负载Pod异常问题和解决方法 Pod状态为Pending 当Pod状态长时间为“Pending”,事件中出现“实例调度失败”的信息时,可根据具体事件信息确定具体问题原因。 图1 pod状态pending 通过以下命令打印Pod日志信息。 kubectl describe
一个网卡只能绑定一个弹性公网IP。 单个弹性公网IP用于多个Server服务器 所有Server资源必须位于同一个VPC,并且该VPC没有NAT网关以及默认路由。 购买弹性公网IP。 登录华为云管理控制台。 在左侧服务列表中,单击“网络 > 弹性公网IP EIP”,进入弹性公网IP页面。 单击“购买弹性公网IP”。
附录:工作负载Pod异常问题和解决方法 Pod状态为Pending 当Pod状态长时间为“Pending”,事件中出现“实例调度失败”的信息时,可根据具体事件信息确定具体问题原因。 图1 pod状态pending 通过以下命令打印Pod日志信息。 kubectl describe
++开发2000行代码。4个中等复杂度算子,基于C++开发,平均每个自定义算子约500行代码。 - 动态shape 是否需要支持动态shape。 例如:需要动态Shape,需要动态Shape的模型有ResNet-50、YOLOv5。 - 参数类型(FP32/FP16) FP32还是FP16混合,判断精度调优难度。
++开发2000行代码。4个中等复杂度算子,基于C++开发,平均每个自定义算子约500行代码。 - 动态shape 是否需要支持动态shape。 例如:需要动态Shape,需要动态Shape的模型有ResNet-50、YOLOv5。 - 参数类型(FP32/FP16) FP32还是FP16混合,判断精度调优难度。
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
图2 转换结果 动态分档模型转换(可选) 如果迁移的模型有多个shape档位的需求,可以通过如下方式对模型进行分档转换。 动态分档是指将模型输入的某一维或者某几维设置为“动态”可变,但是需要提前设置可变维度的“档位”范围。即转换得到的模型能够在指定的动态轴上使用预设的几种sh
该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 性能bench
模型适配 基于MindSpore Lite的模型转换 动态shape 父主题: GPU推理业务迁移至昇腾的通用指导
停止Notebook实例。 动态挂载OBS 获取动态挂载OBS实例信息列表 获取动态挂载OBS实例信息列表。 动态挂载OBS 在运行态Notebook实例,动态挂载OBS。 获取动态挂载OBS实例详情 获取动态挂载OBS实例详情。 动态卸载OBS 动态卸载OBS。 标签管理 添加资源标签
否 - tailor支持动态分档转换功能,需要指定配置文件路径,需要注意即便有配置文件,只要是动态模型就需要指定--input_shape参数。 --input_shape 指定模型转换的shape。 string 否 - 固定shape模型转换可以不填,动态模型转换必填。 --output_path