检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
有向无环图(Directed Acyclic Graph,DAG)的开发。一个DAG是由节点和节点之间的关系描述组成的。开发者通过定义节点的执行内容和节点的执行顺序定义DAG。绿色的矩形表示为一个节点,节点与节点之间的连线则是节点的关系描述。整个DAG的执行其实就是有序的任务执行模板。
使用Workflow实现低代码AI开发 什么是Workflow 运行第一条Workflow 管理Workflow 开发第一条Workflow 开发Workflow命令参考
历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 使用ModelArts PyCharm插件调试训练ResNet50图像分类模型 示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU)
参数相关的配置使用Placeholder对象来表示,以占位符的形式实现用户数据运行时配置的能力,当前支持的数据类型包括:int、str、bool、float、Enum、dict、list。开发者可根据场景需要,将节点中的相关字段(如算法超参)通过Placeholder的形式透出,支持设置默认值,供用户修改配置使用。
Standard使用run.sh脚本实现OBS和训练容器间的数据传输 自定义容器在ModelArts上训练和本地训练的区别如下图: 图1 本地与ModelArts上训练对比 ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下:
file_path String 超参敏感度分析图像的保存路径。 请求示例 如下查询training_job_id为e346206c-6fde-4c33-9dcd-55be17858ceb的作业超参敏感度分析结果中超参batch_size的结果图像保存路径。 GET https://en
支持单节点通过参数配置或者获取训练输出的metric指标信息来决定执行是否跳过,同时可以基于此能力完成对执行流程的控制。 应用场景 主要用于存在多分支选择执行的复杂场景,在每次启动执行后需要根据相关配置信息决定哪些分支需要执行,哪些分支需要跳过,达到分支部分执行的目的,与ConditionStep的使用场景类
开发Workflow命令参考 开发Workflow的核心概念介绍 配置Workflow参数 配置Workflow的输入输出目录 创建Workflow节点 构建Workflow多分支运行场景 编排Workflow 发布Workflow 在Workflow中更新已部署的服务 Workflow高阶能力 父主题:
本文旨在帮助您了解ModelArts的基本使用流程以及相关的常见问题,帮助您快速上手ModelArts服务。 面向不同AI基础的开发者,本文档提供了相应的入门教程,帮助用户更快速地了解ModelArts的功能,您可以根据经验选择相应的教程。 面向AI开发零基础的用户,您可以使用ModelArts在AI
音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。 发布区域:华
使用窍门 创建项目时,如何快速创建OBS桶及文件夹? 自动学习生成的模型,存储在哪里?支持哪些其他操作? 父主题: 使用自动学习实现零代码AI开发
name="training_job_1", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name
在ModelArts的Notebook的Jupyterlab可以安装插件吗? Jupyter可以安装插件。 目前jupyter插件多数采用wheel包的形式发布,一次性完成前后端插件的安装,安装时注意使用jupyter服务依赖的环境“/modelarts/authoring/no
编排Workflow Workflow的编排主要在于每个节点的定义,您可以参考创建Workflow节点章节,按照自己的场景需求选择相应的代码示例模板进行修改。编排过程主要分为以下几个步骤。 梳理场景,了解预置Step的功能,确定最终的DAG结构。 单节点功能,如训练、推理等在ModelArts相应服务中调试通过。
查找Workflow工作流 查看Workflow工作流运行记录 管理Workflow工作流 重试/停止/运行Workflow节点 父主题: 使用Workflow实现低代码AI开发
国际通用的AES算法。 传输中的数据保护 在ModelArts中导入模型时,支持用户自己选择HTTP和HTTPS两种传输协议,为保证数据传输的安全性,推荐用户使用更加安全的HTTPS协议。 数据完整性检查 推理部署功能模块涉及到的用户模型文件和发布到AIGallery的资产在上传
Server适配PyTorch NPU的LoRA训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL LoRA训练是指在已经训练好的SDXL模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 本
Server适配PyTorch NPU的Finetune训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型基础上,使用新的数据集进行微调(fin
SD3基于Lite Server适配PyTorch NPU的训练指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend
DUMP_GRAPH_LEVEL=2 # 1:表示dump图所有图。 2:表示dump除子图外的所有图。 3:表示只dump最后一张图。 问题分析。 配置以上的环境变量之后,再重新转换模型,导出对应的日志和dump图进行分析: 报错日志中搜到“not support