检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
不同区域支持的AI引擎有差异,请以实际环境为准。 推理支持的AI引擎 在ModelArts创建模型时,如果使用预置镜像“从模板中选择”或“从OBS中选择”导入模型,则支持如下常用引擎及版本的模型包。 标注“推荐”的Runtime来源于统一镜像,后续统一镜像将作为主流的推理基础镜像
Unit)和GPU在构造结构上存在差异,因此迁移过程并不是完全平替的关系。昇腾训练芯片属于NPU的范畴,虽然在表达层可以通过torch.cuda和torch.npu的形式来替代,但是真实的算子下发、显存管理、集合通信等存在差异,用户需要了解NPU的运行机制才能更好的使用NPU设备,同时在遇到问题时快速找到原因。 代码迁移操作步骤
通过运行的实例保存成容器镜像 功能介绍 运行的实例可以保存成容器镜像,保存的镜像中,安装的依赖包(pip包)不丢失,VS Code远程开发场景下,在Server端安装的插件不丢失。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API
间有限制: 请求体的大小不超过12MB,超过后请求会被拦截。 因APIG(API网关)限制,平台每次请求预测的时间不超过40秒。 访问在线服务 公网访问在线服务有以下认证方式,API调用请参见认证详情: 通过Token认证的方式访问在线服务 通过AK/SK认证的方式访问在线服务 通过APP认证的方式访问在线服务
示最高分),如图3所示。当选择审核结果为“不通过”时,可以在文本框中写明驳回原因,如图4所示。 图3 审核通过 图4 审核不通过 任务验收(管理员) 发起验收 当团队的成员已完成数据标注,标注作业的创建者可发起验收,对标注结果进行抽验。只有当标注成员存在标注完成的数据时,才可以发起验收,否则发起验收按钮为灰色。
逐个替换模型,检测有问题的模型 该方式主要是通过模型替换,先定位出具体哪个模型引入的误差,进一步诊断具体的模型中哪个算子或者操作导致效果问题,模型替换原理如下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。 图1 精度诊断流程
Notebook保存后的镜像有Entrypoint参数,如图1。Entrypoint参数中指定的可执行文件或命令会覆盖镜像的默认启动命令,Entrypoint中指定的执行命令内容不在镜像中预置,在本地环境通过docker run启动通过Notebook保存的镜像,报错创建容器任务失败,启动文件或目录不存在,如图2。
LLM/AIGC/数字人基于Server适配NPU的训练推理指导 ModelArts提供了丰富的关于Server使用NPU进行训练推理的案例指导,涵盖了LLM大语言模型、AIGC文生图、数字人等主流应用场景。您可单击链接,即可跳转至相应文档查看详细指导。 LLM大语言模型 主流开
和height分别表示归一化后的目标框中心点x坐标、归一化后的目标框中心点y坐标、归一化后的目标框宽度、归一化后的目标框高度。 只支持JPG、JPEG、PNG、BMP格式的图片,单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 图像分割 ModelArts image
偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。
un.sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。 图8 运行启动脚本 上传一张预测图片(手写数字图片)到Notebook中。 图9 手写数字图片 图10 上传预测图片 重新打开一个新的Terminal终端,执行如下命令进行预测。 curl -kv -F 'i
编辑内容,并提交修改后的内容。 前提条件 Notebook处于运行中状态。 打开JupyterLab的git插件 在Notebook列表中,选择一个实例,单击右侧的打开进入“JupyterLab”页面。 图1所示图标,为JupyterLab的Git插件。 图1 Git插件 克隆GitHub的开源代码仓库
(可选)Session鉴权 Session鉴权概述 Session模块的主要作用是实现与公有云资源的鉴权,并初始化ModelArts SDK Client、OBS Client。当成功建立Session后,您可以直接调用ModelArts的SDK接口。 ModelArts开发环境Notebook
训练作业的监控内存指标持续升高直至作业失败 问题现象 训练作业的“状态”为“运行失败”。 原因分析 训练作业的监控内存指标持续升高,导致最后训练作业失败。 处理步骤 查询训练作业的日志和监控信息,是否存在明确的OOM报错信息。 是,训练作业的日志里存在OOM报错,执行2。 否,训
Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 提示:本文档适用于OBS+SFS Turbo的数据存储方案,不适用于仅OBS存储方案。通过OBS对象存储服务(Object
Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 提示:本文档适用于OBS+SFS Turbo的数据存储方案,不适用于仅OBS存储方案。通过OBS对象存储服务(Object
原因分析 用户账号下的SFS Turbo所在的VPC网络需要与专属资源池所在的网络打通,运行于该专属资源池的训练作业才能正常挂载SFS。因此,当训练作业挂载SFS失败时,可能是网络不通导致的。 处理步骤 进入训练作业详情页,在左侧获取SFS Turbo的名称。 图1 获取SFS Turbo的名称
训练精度测试 流程图 训练精度测试流程图如下图所示: 图1 训练精度测试流程图 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,按自己实际情况。 benchmark-cli train <cfgs_yaml_file> <model_name> <run_type>
训练精度测试 流程图 训练精度测试流程图如下图所示: 图1 训练精度测试流程图 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,按自己实际情况。 benchmark-cli train <cfgs_yaml_file> <model_name> <run_type>
ModelArts的Notebook是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf