检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在,则直接追加。 当被追加的源文件比较大时,例如“obs://bucket_name/obs_file.txt”文件大小超过5MB时,追加一个OBS文件的性能比较低。 如果以写入模式或追加模式打开文件,当调用write方法时,待写入内容只是暂时的被存在的缓冲区,直到关闭文件对象(
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
用户自定义镜像或者通过基础镜像导入的模型时,用户自己编写了很多自定义的业务逻辑,这些逻辑有问题将会导致服务部署或者预测失败,需要能够排查出哪里有问题。 处理方法 服务部署失败后,进入服务详情界面,查看服务部署日志,明确服务部署失败原因(用户代码输出需要使用标准输入输出函数,否则输出的内容不会呈现到前端页面日
超参搜索。 当您选择支持超参搜索的算法,需单击超参的范围设置按钮才能开启超参搜索功能。 图2 开启超参搜索功能 开启超参搜索功能后,用户可以设置搜索指标、搜索算法和搜索算法参数。三个参数显示的支持值与算法管理模块的超参设置对应。 完成超参搜索作业的创建后,训练作业需要运行一段时间。
数据,客户端有不同的实现,同一种语言也存在不同的lib包的实现,这里不考虑实现的不同种类。 客户端发送的内容在协议的角度不限定格式,Postman支持Text/Json/XML/HTML/Binary,以text为例,在输入框中输入要发送的文本,单击右侧中部的Send按钮即可将请
偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。
用户自定义镜像自建的conda环境会查到一些额外的包,影响用户程序,如何解决? 问题现象 用户的自定义镜像运行在Notebook里会查到一些额外的pip包。如下图所示,左侧为自定义镜像运行在本地环境,右侧为运行在Notebook里。 可能原因 Notebook自带moxing、m
机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。 选择算法的实现方式 Mo
在ModelArts中如何查看OBS目录下的所有文件? 在使用Notebook或训练作业时,需要查看目录下的所有文件,您可以通过如下方式实现: 通过OBS管理控制台进行查看。 使用当前账户登录OBS管理控制台,去查找对应的OBS桶、文件夹、文件。 通过接口判断路径是否存在。在已有
已订阅的资产。 我的案例 展示个人发布的资产案例和已订阅的资产案例。 “我的发布”:可以查看个人发布的案例信息。 “我的订阅”:可以查看个人订阅的案例信息。 我的AI说 展示个人发布的技术文章列表,可以查看文章浏览量、收藏量、订阅量等信息。通过右侧的“删除”可以管理已发布的技术文章。
写正确的OBS路径。 图2 输入输出设置-数据集 图3 输入输出设置-OBS目录 确认参数填写无误后,单击“创建”,完成数据处理任务的创建。 数据去重算子(SimDeduplication算子) 可以依据用户设置的相似程度阈值完成图像去重处理。图像去重是图像数据处理常见的数据处理
模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 本文档适用于OBS+SFS Turbo的数据存储方案,不适用于仅使用OBS的存储方案。通过OBS对象存储服务(Object
成网络的输出结果是否真实。训练中获得的生成器网络可用于生成与输入图片相似的图片,用作新的数据集参与训练。基于Gan网络生成新的数据集不会生成相应的标签。图像生成过程不会改动原始数据,新生成的图片或xml文件保存在指定的输出路径下。 基于StyleGan2用于在数据集较小的情形下,
类型为INTERNAL时需要指定可访问的子账号的账号名,可选择多个。 每个账号每个IAM项目都会分配1个默认工作空间,默认工作空间的访问控制为PUBLIC。 通过工作空间的访问控制能力,可限制仅允许部分人访问对应的工作空间。通过此功能可实现类似如下场景: 教育场景:老师可给每个学
服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。 本章节的示例代码都是在ModelArts
在单卡环境下,执行一个Epoch训练任务,GPU和NPU训练叠加效果如下: 上图中的红色曲线为GPU Loss折线图,蓝色曲线为NPU训练Loss折线图。在整网训练单个Epoch情况下,Loss总体的绝对偏差大约为0.08181。 父主题: 精度对齐
偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。
请求签名,从而实现快速响应。 您可以在服务详情页的“调用指南”页签(如图5)获取API接口公网地址(对应下文示例中的在线服务的调用地址url)和AppKey/AppSecret(对应下文示例中的app_key、app_secret)和AppCode(对应下文示例中的app_cod
创建成功后,Notebook实例的状态为“运行中”,单击操作列的“打开”,访问JupyterLab。 图2 打开Notebook实例 进入JupyterLab页面后,自动打开Launcher页面,如下图所示。您可以使用开源支持的所有功能,详细操作指导可参见JupyterLab官网文档。 图3 JupyterLab主页
导出ModelArts数据集中的数据 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal