检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
方法二:huggingface-cli:huggingface-cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。
权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。
权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。
方法二:huggingface-cli:huggingface-cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。
权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。
当在训练作业的启动脚本中使用os.system('cd xxx')无法进入相应的文件夹时,建议使用如下方法: import os os.chdir('/home/work/user-job-dir/xxx') 父主题: Standard模型训练
URI POST /v1/{project_id}/notebooks 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。
由于Notebook的/cache目录只能支持500G的存储,超过后会导致实例重启,ImageNet数据集大小超过该限制,因此建议用线下资源调试、或用小批量数据集在Notebook调试(Notebook调试方法与使用Notebook进行代码调试、使用Notebook进行代码调试相同
使用华为云A系列裸金属服务器时有如下注意事项: nvidia-fabricmanager版本号必须和nvidia-driver版本号保持一致,可参考安装nvidia-fabricmanager方法。 NCCL必须和CUDA版本相匹配,可单击此处可查看配套关系和安装方法。
multi-lora 什么是multi-lora LoRA(Low-Rank Adaptation)是一种适用于大模型的轻量化微调技术方法。原理是通过在模型层中引入低秩矩阵,将大模型的权重降维处理,来实现高效的模型适配。
处理方法 了解ModelArts依赖的OBS权限自定义策略,请参见ModelArts依赖的OBS权限自定义策略样例。 在统一身份认证服务为用户增加自定义策略权限。详细操作请参见创建自定义策略。
获取方法请参见获取项目ID和名称。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数 参数类型 描述 add_sample_count Long 新增样本数量。 create_time Long 任务创建时间。
获取方法请参见获取项目ID和名称。 请求消息 请求参数如表2所示。 表2 请求参数 参数 是否必选 参数类型 说明 job_name 是 String 训练作业名称。限制为1-64位只含数字、字母、下划线和中划线的名称。
方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone 会下载历史版本占用磁盘空间。
方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
方法一:执行cd checkpoints命令打开checkpoints文件夹。 方法二:新建一个文件夹,移动checkpoints文件夹的数据到新建的文件夹下。
获取方法请参见获取项目ID和名称。 job_id 是 Long 训练作业的ID。 请求消息 请求参数如表2所示。 表2 请求参数 参数 是否必选 参数类型 说明 job_desc 否 String 对训练作业的描述,默认为“NULL”,字符串的长度限制为[0, 256]。
示例:创建DDP分布式训练(PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。