检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5
UDA(由英伟达推出的统一计算架构)计算库,Ascend-Powered-Engine引擎的镜像中安装了与Ascend驱动适配的CANN(华为针对AI场景推出的异构计算架构)计算库。 提交训练作业后,ModelArts Standard平台会自动运行训练作业的启动文件。 Asce
列表中选择已添加的标签。单击“确定”,完成选中图片的标注操作。例如,您可以选择多张图片,按照花朵种类将图片标注为“tulips”。同样选择其他未标注分类图片,将其标注为“sunflowers”、“roses”等。标注完成后,图片将存储至“已标注”页签下。 图片标注支持多标签,即一张图片可添加多个标签。
mindspore_lite as mslite import numpy as np from PIL import Image # 设置目标设备上下文为Ascend,指定device_id为0 context = mslite.Context() context.target = ["ascend"]
mp"表示使用python多进程进行启动多卡推理。默认使用"mp"后端启动多卡推理。 推理启动脚本必须名为run_vllm.sh,不可修改其他名称。 hostname和port也必须分别是0.0.0.0和8080不可更改。 高阶参数说明: --enable-prefix-cach
它不仅简化了打包应用的流程,也简化了打包应用的库和依赖,甚至整个操作系统的文件系统能被打包成一个简单的可移植的包,这个包可以被用来在任何其他运行Docker的机器上使用。 Kubernetes Kubernetes是一个开源的容器编排部署管理平台,用于管理云平台中多个主机上的容
登录弹性云服务器ECS控制台,单击右上角“购买弹性云服务器”,进入购买弹性云服务器页面,完成基本配置后单击“下一步:网络配置”,进入网络配置页面,选择1中打通的VPC,完成其他参数配置,完成高级配置并确认配置,下发购买弹性云服务器的任务。等待服务器的状态变为“运行中”时,弹性云服务器创建成功。单击“名称/ID”,
对于ChatGLMv3-6B、GLMv4-9B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日
zers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。若缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 若用户要自定义数据处理脚本并且单独执行,同样以
践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5
践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5
践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5
如果未上传图片,AI Gallery会为AI应用自动生成封面。 应用描述 否 输入AI应用的功能介绍,AI应用创建后,将展示在AI应用页签上,方便其他用户了解与使用。 支持0~100个字符。 参数填写完成后,单击“创建”,确认订单信息无误后,单击“确定”跳转至AI应用详情页。 当AI应用的状态变为“待启动”时,表示创建完成。
对于ChatGLMv3-6B、GLMv4-9B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日
6的运行环境搭载的TensorFlow版本为1.8.0。 python3.6、python2.7、tf2.1-python3.7,表示该模型可同时在CPU或GPU运行。其他Runtime的值,如果后缀带cpu或gpu,表示该模型仅支持在CPU或GPU中运行。 默认使用的Runtime为python2.7。 默认启动命令:sh
硬件并重新下发训练作业。针对于分布式场景,容错检查会检查本次训练作业的全部计算节点。 下图中有四个场景,其中场景四为正常训练作业失败场景,其他三个场景下可开启容错功能进行训练作业自动恢复。 场景一:环境预检测失败、硬件检测出现故障,系统隔离所有故障节点并重新下发训练作业。 图1 预检失败&硬件故障
对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日
zers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。若缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 若用户要自定义数据处理脚本并且单独执行,同样以
zers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以
zers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以