检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
场景介绍 Llama2(Large Language Model Meta AI)是由Meta AI发布的新一代大语言系列模型,上下文长度由Llama的2048扩展到了4096,可以理解和生成更长的文本。Llama2包含了70亿、130亿和700亿参数的模型,即:Llama2-7
SFT微调数据处理 SFT微调(Supervised Fine-Tuning)前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 这里以Qwen-14B为例,对于Qwen-7B和Qwen-72B,操作过程与Qwen-14B相同,只需修改对应参数即可。 下载数据
准备Notebook(可选) 本步骤为可选操作。ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且No
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
准备权重 获取对应模型的权重文件,获取链接参考表1。权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。文件会直接下载用户本地,需要再上传至SFS Turbo中。
查看日志和性能 查看日志 若查看启动作业日志信息,可通过以下命令打印正在启动的日志信息。其中${pod_name}为pod信息中的NAME,例如vcjob-main-0。 kubectl logs -f ${pod_name} 训练过程中,训练日志会在最后的Rank节点打印。 图1
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
准备权重 获取对应模型的权重文件,获取链接参考表1。权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。文件会直接下载用户本地,需要再上传至SFS Turbo中。
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
在ModelArts Standard上运行GPU多机多卡训练任务 操作流程 准备工作: 购买服务资源(VPC/SFS/OBS/SWR/ECS) 配置权限 创建专属资源池(打通VPC) ECS服务器挂载SFS Turbo存储 在ECS中设置ModelArts用户可读权限 安装和配置OBS命令行工具
预训练数据处理 训练前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 Alpaca数据处理说明 数据预处理脚本preprocess_data.py存放在代码包的“llm_train/AscendSpeed/ModelLink/tools”目录中,脚本样
SFT全参微调训练 SFT全参微调数据处理 SFT全参微调权重转换 SFT全参微调任务 父主题: GLM3-6B模型基于DevServer适配PyTorch NPU训练指导(6.3.904)
管理应用中的决策表 决策表是分析和表达多逻辑条件下,执行不同操作情况的工具。在AstroZero环境配置中,可管理当前账号下所有的决策表,包括查看、启用、禁用决策表。 约束与限制 在AstroZero沙箱环境和生产环境,才会显示此菜单。在沙箱环境和生产环境中,操作完全相同,本章节以在生产环境中操作为例。
管理应用中的配置态流程 配置态流程是对BPM(工作流)流程进行一定的封装,其中定义了流程的基本要素,使用户能够在配置态对流程进行定制修改。在AstroZero环境配置中,可管理当前账号下所有的配置态流程,包括查看、启用、禁用配置态流程等。 约束与限制 在AstroZero沙箱环境
使用SSH工具连接Notebook,服务器的进程被清理了,GPU使用率显示还是100% 原因是代码运行卡死导致被进程清理,GPU显存没有释放;或者代码运行过程中内存溢出导致程序被清理,需要释放下显存,清理GPU,然后重新启动。为了避免进程结束引起的代码未保存,建议您每隔一段时间保存下代码输出至OBS桶或者容器
部署在线服务时,自定义预测脚本python依赖包出现冲突,导致运行出错 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内部存在同名包,
在VS Code中上传下载文件 在VS Code中上传数据至Notebook 不大于500MB数据量,直接复制至本地IDE中即可。 大于500MB数据量,请先上传到OBS中,再从OBS上传到云上开发环境。 操作步骤 上传数据至OBS。具体操作请参见上传文件至OBS桶。 或者在本地VS
ModelArts预置镜像更新说明 本章节提供了ModelArts预置镜像的变更说明 ,比如依赖包的变化,方便用户感知镜像能力的差异,减少镜像使用问题。 镜像中包含的依赖项的查询方法:在Terminal里执行如下命令。 pip list 统一镜像更新说明 表1 统一镜像更新说明 镜像名称
访问在线服务支持的认证方式 通过Token认证的方式访问在线服务 通过AK/SK认证的方式访问在线服务 通过APP认证的方式访问在线服务 父主题: 将AI应用部署为实时推理作业
创建Workflow模型注册节点 功能介绍 通过对ModelArts模型管理的能力进行封装,实现将训练后的结果注册到模型管理中,便于后续服务部署、更新等步骤的执行。主要应用场景如下: 注册ModelArts训练作业中训练完成的模型。 注册自定义镜像中的模型。 属性总览 您可以使用