检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/home/ma-user/ws/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。 MODEL_NAME
/home/ma-user/ws/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。 MODEL_NAME
/home/ma-user/work/model/llama-2-13b-chat-hf 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。 MODEL_NAME
Performance Adviso主页面 提交性能诊断任务 如果您的NPU性能数据存放在OBS上,Source选择OBS,Path输入OBS地址,格式如obs://bucket1/profiling_dir1,单击Submit按钮。界面参考下图。 图4 分析OBS上的性能数据 如果
文件内容是多行JSON,每行JSON描述一个输入数据,需精确到文件,不能是文件夹; JSON内容需定义一个source字段,字段值是OBS的文件地址,有2种表达形式: 桶路径“<obs path>{{桶名}}/{{对象名}}/文件名”,适用于访问自己名下的OBS数据;您可以访问OBS服务的对象获取路径。<obs
发布和管理AI Gallery项目 在AI Gallery中,您可以将个人开发的Notebook代码免费分享给他人使用。 前提条件 在ModelArts的Notebook或者CodeLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts管理控制台,选择“开发环境
engine_version String 算法选择的引擎版本名称。若填入engine_id则无需填写。 image_url String 算法选择的自定义镜像地址。 表14 code_tree 参数 参数类型 描述 name String 算法目录树当前层级目录名。 children Object
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
点。还支持编辑资源标签操作。 图3 单个节点操作 在节点的搜索栏,支持通过节点的名称、节点状态、高可用冗余、批次、驱动版本、驱动状态、IP地址、资源标签等关键字搜索节点。 支持导出Standard资源池的节点信息到Excel表格中,方便查阅。勾选节点名称,在节点列表上方单击“导出
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
e Cluster资源池单个节点驱动章节。 查找搜索节点 在节点管理页面的搜索栏中,支持通过节点名称、状态、批次、驱动版本、驱动状态、IP地址、节点池、资源标签等关键字搜索节点。 设置节点列表显示信息 在节点管理页面中,单击右上角的设置图标,支持对节点列表中显示的信息进行自定义。
使用ModelArts Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。
安全组,默认为空,当配置了vpc_id则此参数必填。安全组起着虚拟防火墙的作用,为服务实例提供安全的网络访问控制策略。安全组须包含至少一条入方向规则,对协议为TCP、源地址为0.0.0.0/0、端口为8080的请求放行。 subnet_network_id 否 String 子网的网络ID,默认为空,当配置了
对训练数据的拼接和推理prompt的构造等说明。 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
数据集。 将原始.xlsx格式的数据转换为.csv格式的数据的方法如下: 将原始表格数据(.xlsx)另存。单击“文件>另存为”,选择本地地址后,下拉选择“保存类型”为“CSV (逗号分隔)(*.csv)”单击“保存”,在弹窗中,单击“确定”后就可以将.xlsx格式数据集转换为.csv格式。
训练的权重转换说明 以llama2-13b举例,使用训练作业运行obs_pipeline.sh脚本后,脚本自动执行权重转换,并检查是否已经完成权重转换的过程。 如果已完成权重转换,则直接执行训练任务。如果未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证