检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中 {instruction}、{input}、{output} 分别对应数据集中 instruction、input、output
管理AI Gallery中的AI应用 当AI应用创建完成后,支持修改内容,例如修改环境变量、可见范围。 约束限制 当AI应用的“可见范围”是“私密”时,才支持修改环境变量、可见范围或删除AI应用。 管理AI应用环境变量 AI应用支持增删改查环境变量,配置好的环境变量可以在运行文件中直接调用。
发布Workflow到AI Gallery Workflow支持发布到AI Gallery,分享给其他用户使用,执行如下代码即可完成发布。 workflow.release_to_gallery() 发布完成后可前往gallery查看相应的资产信息,资产权限默认为private,可在资产的console页面自行修改。
在Windows上安装配置Grafana 适用场景 本章节适用于在Windows操作系统的PC中安装配置Grafana。 操作步骤 下载Grafana安装包。 进入下载链接,单击Download the installer,等待下载成功即可。 安装Grafana。 双击安装包,按照指示流程安装完成即可。
ma-cli dli-job提交DLI Spark作业支持的命令 $ma-cli dli-job -h Usage: ma-cli dli-job [OPTIONS] COMMAND [ARGS]... DLI spark job submission and query job
Notebook专属预置镜像列表 ModelArts开发环境提供Docker容器镜像,可作为预构建容器运行。预置镜像里面包含PyTorch,Tensorflow,MindSpore等常用AI引擎框架,镜像命名以AI引擎为主,并且每个镜像里面都预置了很多常用包,用户可以直接使用而无需重新安装。
使用Qwen2.5-72B-1K、Qwen2.5-32B调优的Checkpoint创建模型时,权重校验失败 问题现象 使用Qwen2.5-72B-1K、Qwen2.5-32B调优的Checkpoint创建模型时,权重校验失败。 版本详情的报错信息如下: Insufficient storage
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
准备权重 获取对应模型的权重文件,获取链接参考表1。 在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件
日志提示Compile graph failed 问题现象 日志提示:Compile graph failed。 图1 报错提示 原因分析 模型转换时未指定Ascend后端。 处理方法 需要在模型转换阶段指定“--device=Ascend”。 父主题: 常见问题
查看日志和性能 单击作业详情页面,则可查看训练过程中的详细信息。 图1 查看训练作业 在作业详情页的日志页签,查看最后一个节点的日志,其包含“elapsed time per iteration (ms)”数据,可换算为tokens/s/p的性能数据。 吞吐量(tokens/s/p):global
准备环境 本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
预训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
LoRA微调训练 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
查看日志和性能 查看日志 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,可以在${SAVE_PATH}/logs路径下获取。日志存放路径为:/home/ma-user/ws/saved_dir_for_ma_output/llama2-70b/logs
查看日志和性能 查看日志 训练过程中,训练日志会在第一个的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应表1表格中output_dir参数值路径下的trainer_log.jsonl文件 查看性能
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
准备环境 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。