检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用户AK-SK认证模式 本模式支持OBS管理、训练管理、模型管理、服务管理模块的鉴权。 示例代码 1 2 from modelarts.session import Session session = Session(access_key='***',secret_key='***'
pt.conf.d/10periodic”文件: vi /etc/apt/apt.conf.d/10periodic 修改文件以将所有选项设置为“0”: APT::Periodic::Update-Package-Lists "0"; APT::Periodic::Downloa
订阅的主题。 entity String 订阅的主体。 events Array of strings 订阅的事件。 请求示例 创建消息订阅。设置订阅的主题为“fengbin26”,订阅的主体为“238947895793875835893490”,订阅的事件为“[ "*:failed
/scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 若镜像使用ECS中构建新镜像和Notebook中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
/scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
/scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
service [Unit] Description=buildkitd After=network.target [Service] ExecStart=/usr/local/buildkit/bin/buildkitd [Install] WantedBy=multi-user
/scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
907版本新增如下内容: 文档和代码中新增对mistral和mixtral模型的适配,并添加训练推荐配置。 文档准备镜像步骤中,仅提供:直接使用基础镜像方案、ECS中构建新镜像方案,删除使用Notebook创建镜像方案。 文档中新增对 llama3 支持长序列文本(sequence_length >
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更
径。“输出路径”不能与“保存路径”为同一路径,且“输出路径”不能是“保存路径”的子目录。 图1 导出新数据集 数据导出成功后,您可以前往您设置的保存路径,查看到存储的数据。当导出方式选择为新数据集时,在导出成功后,您可以前往“数据集”列表中,查看到新的数据集。 在“数据集概览页”
ModelArts标注数据丢失,看不到标注过的图片的标签 如何将某些图片划分到验证集或者训练集? 物体检测标注时除了位置、物体名字,是否可以设置其他标签,比如是否遮挡、亮度等? ModelArts数据管理支持哪些格式? 旧版数据集中的数据是否会被清理? 数据集版本管理找不到新建的版本
sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_sft_13b.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_lora_13b.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_sft_13b.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_lora_13b.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
Lite进行推理时一般需要先设置目标设备的上下文信息,然后构建推理模型,获取输入数据,模型预测并得到最终的结果。一个基础的推理框架写法如下所示: # base_mslite_demo.py import mindspore_lite as mslite # 设置目标设备上下文为Ascend,指定device_id为0
git-lfs-linux-arm64-v3.2.0.tar.gz cd git-lfs-3.2.0 sudo sh install.sh 设置git配置去掉ssl校验。 git config --global http.sslVerify false 从github拉取MiniCPM-V代码。
|──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir}(例如使用SFS Turbo的路径:/mnt/sfs_turbo/)
|──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir}(例如使用SFS Turbo的路径:/mnt/sfs_turbo/)