检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度学习需要大量的数据集,但是现实是只有零星的数据,大家有什么收集数据的经验和经历,还有什么收集数据的好办法
在1904年的时候,生物学家了解了神经元的结构然后在1945年的时候发明了神经元模型。那么这个神经元的模型真的可以模拟生物的神经功能吗,个人觉得有点奇妙,不过动物植物本来都是很奇妙的存在。所谓的全连接层,就是说某层的一个节点,和他上一层的所有节点都有连接。就像连接的边长不同,每条
这里谈到了独热编码one-hot,独热编码是用来表示标签数据的。前面已经知道了,标签数据很简单,就是表示0-9范围内的一个数字。 说实话独热编码有什么用处,真的还没有理解。还有什么欧式空间的概念啊,都很陌生。 看看代码吧。 ```python #独热编码示例。 x=[3,4] tf
可视化还是比较重要的,因为数据能在图形上看到,会更直观,更符合人的认知思维。 这里先来展示一下loss的可视化。 用matplot将列表值画出来,调用非常简单 plt.plot(loss_list) 横坐标是列表中的索引,纵坐标是列表值,也就是loss值。 可以看到,曲线在收敛了
ϵ 的整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加的噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性和乘性噪声重新参数化模型。批标准化的主要目的是改善优化,但噪声具有正则化的效果,有时没必要再使用Dropout。
http://mirrors.aliyun.com/ubuntu/ xenial main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted
难易程度也可以看出,围棋是最强调系统性思维的,所以 AI想要战胜人类也是最难的。第一讲到这里就结束了,第二讲看了一点,其中关于人工智能机器学习概念,除了公式的定义之外,用类比的方法讲的非常的简单易懂
2.8.2 怎么做首先,我们需要使用Keras API定义适当的层,这里的关键API作用是创建合并层并使用它来创建解译层。concatenate函数concatenate函数用于合并两个模型,如以下代码所示: 以下是完整的模型拓扑代码: 模型拓扑保存到文件中,并显示单个输入层如何馈送到两个特征提取层,如下图所示:
1.2.2 怎么做接下来将介绍在安装Keras之前必须安装的各个组件。安装miniconda首先,为了更方便地安装所需软件包,你需要先进行miniconda的安装。miniconda是conda软件包管理器的精简版本,可以用它进行Python虚拟环境的创建。建议读者安装Python
但这个服务在新版的训练作业里已经没有了,也行是因为这个可视化服务的使用不太活跃吧所以在Modelarts产品里做这个可视化不太方便,不过没关系,我们可以用另一个云产品来做,就是cloudide
什么是深度?深度就是简单的量变。神经网络到深度神经网络,就是每一层的节点搞多一点,层数也搞多一点。但是如果说网络越深,节点越多,表现能力就越好,这个我看未必,过犹未及嘛深度神经网络本身没再多讲,讲的是卷积神经网络就是CNN。这个是在60年代的时候,在研究猫的神经元时发现的,199
本质上即为每个类别创建一个输出通道。因为上图有5个类别,所以网络输出的通道数也为5,如下图所示:如上图所示,预测的结果可以通过对每个像素在深度上求argmax的方式被整合到一张分割图中。进而,我们可以轻松地通过重叠的方式观察到每个目标。argmax的方式也很好理解。如上图所示,每
机器:惠普 暗影精灵3 win10与Ubuntu16.04均为UEFI分区 清除ubuntu系统 使用软件:diskgenius 删除Ubuntu系统使用的几个分区(包括EFI分区),注意不要删除Windows的EFI分区 若不确定Ubuntu相关分区,可通过【Windows+X】
[==============================] - 1s 0us/step ```python #后续处理是否又使用tf1.x来做呢?虽然有点不伦不类,后面还是试一试吧 ```
说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```
虽然随机梯度下降仍然是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。动量的效果。动量的主要目的是解决两个问题:Hessian
1是直接使用sklearn.preprocessing里的scale来做归一化,更简单便捷 2不是一股脑将数据全用于训练,划分了分别用于训练、验证、测试的数据 3损失函数,优化器方面,代码有变化,头疼~ 4对训练数据没有做打散的操作 代码如下: 最后loss看上去比较大,都上百了,是因为是做了平方的原因吧~我猜
那怎么做归一化呢,方法比较简单,就是 (特征值 - 特征值最小者)/(特征值最大值 - 特征值最小者) 这样归一化后的值,范围在 [0,1]之间。 标签值是不需要做归一化的哦 放一下有修改的代码,以及训练的结果: ```python #做归一化,对列index是0到11的特征值做归一化
3.9.2 怎么做创建序贯模型: 这里创建了一个具有两个隐藏层,丢弃率为0.2的网络。使用的优化器为RMSProp。以下是上述代码的输出: 绘制RMSProp的模型准确率曲线: 同样,模型损失曲线如下图所示: RMSProp的最终测试损失和测试准确率计算如下: 输出如下: 使用RMSProp获得的准确率约为0