检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
guided-decoding 什么是guided-decoding Guided Decoding是一种用于生成文本的策略,通过提供额外的上下文或约束,来引导模型生成更符合预期的结果。 比如使用openai启动服务,通过配置guided_json参数使用JSON Schema的架构来举例。
scripts/llama2/0_pl_sft_7b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.908)
NOTEBOOK:计费规格实例。 billing_items Array of strings 计费资源类型。枚举值: STORAGE:存储资源计费。 COMPUTE:计算资源计费。 ALL:所有计费类型 user user object 账号信息 表5 JobProgress 参数 参数类型 描述 notebook_id
NOTEBOOK:计费规格实例。 billing_items Array of strings 计费资源类型。枚举值: STORAGE:存储资源计费。 COMPUTE:计算资源计费。 ALL:所有计费类型 user user object 账号信息 表5 JobProgress 参数 参数类型 描述 notebook_id
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
Ascend-vLLM推理常见问题 问题1:在推理预测过程中遇到NPU out of memory 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified
scripts/llama2/0_pl_sft_7b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.909)
企业项目 创建开发环境实例 POST /v1/{project_id}/notebooks modelarts:notebook:create ecs:serverKeypairs:create swr:repository:getNamespace swr:repository:listNamespace
而且,由于实现过程差异,不同硬件对于同样的计算过程,数值计算结果通常会有差异,比如GPU和CPU之间,GPU各版本之间,数值计算结果都有一定差异,在特定的容限范围内,不会影响模型的最终收敛。所以,计算的数值差异是很常规的现象,并非错误。 为了更好地了解这种计算差异,并且能够正确区分正常计算差异和引起模型精
报错“Failed to install the VS Code Server.”或“tar: Error is not recoverable: exiting now.”如何解决? 问题现象 或 原因分析 可能为/home/ma-user/work磁盘空间不足。 解决方法 删
demo.sh方式启动(历史版本) 本章节介绍历史版本的训练任务启动方式。6.3.912版本同时兼容历史版本的训练任务启动方式。 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。
产品优势 ModelArts服务具有以下产品优势。 稳定安全的算力底座,极快至简的模型训练 支持万节点计算集群管理。 大规模分布式训练能力,加速大模型研发。 提供高性价比国产算力。 多年软硬件经验沉淀,AI场景极致优化。 加速套件,训练、推理、数据访问多维度加速。 一站式端到端生产工具链,一致性开发体验
ModelArts导入模型时,如何编写模型配置文件中的安装包依赖参数? 问题描述 从OBS中或者从容器镜像中导入模型时,开发者需要编写模型配置文件。模型配置文件描述模型用途、模型计算框架、模型精度、推理代码依赖包以及模型对外API接口。配置文件为JSON格式。配置文件中的“dependencies”,表示配置模型推理代
试算法,主要目的是验证算法收敛性、检查是否有训练过程中的问题,方便用户调测。 MindInsight能可视化展现出训练过程中的标量、图像、计算图以及模型超参等信息,同时提供训练看板、模型溯源、数据溯源、性能调试等功能,帮助您更高效地训练调试模型。MindInsight当前支持基于
执行训练任务(历史版本) 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
W8A8量化 什么是W8A8量化 W8A8量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。 约束限制 支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表。 激活量化支持动态per-token和静态per-tensor,支持非对称量化。
on "gptq"参数,其他参数请参考启动在线推理服务。 python -m vllm.entrypoints.openai.api_server --model <your_model> --quantization "gptq" 父主题: 量化