检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
阶段二:隐私规则防护 使用TICS的隐私规则防护能力确保数据安全。 前提条件 完成数据发布。 操作步骤 进入多方安全计算的作业执行界面,单击创建。 图1 创建作业 在作业界面中,按照1~4提供的案例和SQL语句进行作业测试。 图2 作业界面 假设有人输入以下代码试图直接查询敏感数据。
发布数据集 企业B分别自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 企业B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 外部数据共享
其他机构的训练样本数目 7366 测试集样本数目 7257 操作步骤 进入TICS服务控制台。 在计算节点管理中,找到购买的计算节点,通过登录地址,进入计算节点控制台。 图1 前往计算节点 登录到计算节点后,进入数据管理并进行数据集发布。 图2 数据管理中新建数据集 参考下图填写参数信息。
存在数据不全面、风控不及时的问题。随着隐私计算等技术为数据要素的有效流通提供了必要手段,多方数据联合风控成为新趋势。其中,黑名单共享查询是风控中的一个重要环节,企业间的黑名单共享能有效发挥风险联防联控效用。 在信息核验过程中,通过隐私计算技术实现多方黑名单数据共享,对电诈、洗钱、
一个CCE集群可以为同一用户的多个空间使用吗? TICS计算节点支持部署到CCE集群上。但当前在购买TICS服务时仅支持直接创建CCE集群,不支持选择已有的CCE集群。 因此一个CCE集群只能供一个空间使用,且必须是随TICS服务购买时直接创建的CCE集群,不能是已有集群。 CC
发布数据集 企业A和企业B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 以企业A为例,数据集信息如下: 隐私求交场景需要将求交的字段设置为“非敏感”的唯一标识。 父主题: 隐私求交黑名单共享场景
的速度会变慢,传输的数据量也会变大。 企业A完成信息选择后,单击“保存并提交审批”即可向数据提供方企业B发送一条审批信息。 企业B在自己的计算节点上可以单击“审批管理”,选择“待处理”的实时隐匿查询作业审批,可以看到自己的数据被如何使用。待企业B同意审批之后,企业A可以开始执行实时隐匿查询作业。
查看求交结果 隐私求交作业执行完成后,企业A可以通过单击“历史作业 > 查看结果”看到隐私求交作业的运行结果,包括交集的大小和交集文件的路径。 打开obs到指定目录下查看,可以看到有两个结果文件,其中一个是交集记录的序号alignedIds.csv,另一个是交集记录的id alignedOriginalIds
边缘节点部署模式下创建节点,该如何配置资源分配策略? 使用场景 购买计算节点页面,选择边缘部署模式。 操作步骤 进入购买计算节点页面。 部署配置选择边缘节点部署。 云租户部署模式下,TICS服务可以按照选取的规格,为客户预置默认资源分配策略。 边缘节点部署模式下,使用的纳管节点为
b5b7”这样的一条数据,查询结果中即会返回企业A所选择的企业B的数据字段。 同时企业A的业务系统后台也可以通过API调用的方式调用企业A计算节点的接口发起实时隐匿查询,更好地服务生产业务。 父主题: 外部数据共享
使用TICS联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
创建并运行隐私求交作业 企业A单击“作业管理 > 隐私求交 > 创建”,依次填写作业名称、选择需要求交的数据集和对应的求交列、选择算法协议及各种参数,再单击“保存并执行”即可发起一次隐私求交查询。 父主题: 隐私求交黑名单共享场景
评估型横向联邦作业流程 基于横向联邦作业的训练结果,可以进一步评估横向联邦模型,将训练好的模型用于预测。 选择对应训练型作业的“历史作业”按钮,获取最新作业的模型结果文件路径。 图1 查看模型结果文件的保存位置 前往工作节点上步骤1展示的路径,下载模型文件。由于Logistic
乳腺癌数据集作业结果 本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20)
执行联邦学习作业时,报“ERROR UNAVAILABLE:Network closed for unknown reason”,如何解决? 问题描述 执行联邦作业时,出现“ERROR UNAVAILABLE:Network closed for unknown reason”报错信息。
选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业 配置作业的执行脚本,训练模型文件。 执行脚本是每个参与方的计算节点在本地会执行的模型训练、评估程序,用于基于本地的数据集训练子模型。 训练模型文件则定义了模型的结构,会用于每个参与方在本地初始化模型。
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练特征;过低的iv值没有区分性会造成训练资源的浪费,过
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模