检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建预测大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置
创建NLP大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置
创建专业大模型部署任务 平台支持部署预置的专业大模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置。 表1 专业大模型部署参数说明
准备工作 注册华为账号并开通华为云,并完成实名认证,账号不能处于欠费或冻结状态。 检查开发环境要求,确认本地已具备开发环境。 登录“我的凭证 > 访问密钥”页面,依据界面操作指引获取Access Key(AK)和Secret Access Key(SK)。下载的访问密钥为credentials.csv
编排应用 Agent平台支持为应用配置插件、工作流技能,支持接入知识库,还可增加应用的对话体验,详见创建与管理插件、编排工作流、创建与管理知识库。 应用编排流程见表1。 表1 应用编排流程 操作步骤 说明 步骤1:创建应用 创建一个新应用。 步骤2:配置Prompt 在应用中配置大模型所需的
创建科学计算大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置。 表1 科学计算大模型部署参数说明
模型开发 ModelArts Studio大模型开发平台提供了模型开发功能,涵盖了从模型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts
使用数据工程构建预测大模型数据集 预测大模型支持接入的数据集类型 盘古预测大模型仅支持接入预测类数据集,不同模型所需数据见表1,该数据集格式要求请参见预测类数据集格式要求。 表1 预测大模型与数据集类型对应关系 基模型 模型分类 数据集内容 文件格式 预测大模型 时序预测模型 时序数据
数据工程使用流程 高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤
使用“能力调测”调用科学计算大模型 能力调测功能支持用户调用预置或训练后的科学计算大模型。使用该功能前,请完成模型的部署操作,步骤详见创建科学计算大模型部署任务。 使用“能力调测”调用科学计算大模型可实现包括全球中期天气要素预测、全球中期降水预测、全球海洋要素、区域海洋要素、全球海洋生态
数据工程常见报错与解决方案 数据工程常见报错及解决方案请详见表1。 表1 数据工程常见报错与解决方案 功能模块 常见报错 解决方案 数据获取 File format mismatch, require [{0}]. 请检查创建数据集时使用的数据,与平台要求的文件内容格式是否一致。
文本类数据集格式要求 ModelArts Studio大模型开发平台支持创建文本类数据集,创建时可导入多种形式的数据,具体格式要求详见表1。 表1 文本类数据集格式要求 文件内容 文件格式 文件要求 文档 txt、mobi、epub、docx、pdf 单个文件大小不超过50GB,文件数量最多
使用数据工程构建CV大模型数据集 CV大模型支持接入的数据集类型 盘古CV大模型支持接入图片类、视频类、其他类数据集,,不同模型所需数据见表1,数据集格式要求请参见图片类数据集格式要求、视频类数据集格式要求、其他类数据集格式要求。 表1 训练CV大模型数据集类型要求 基模型 训练场景
使用数据工程构建NLP大模型数据集 NLP大模型支持接入的数据集类型 盘古NLP大模型仅支持接入文本类数据集,数据集文件内容包括:预训练文本、单轮问答、多轮问答、带人设单轮问答、带人设多轮问答等,不同训练方式所需要使用的数据见表1,该数据集格式要求请参见文本类数据集格式要求。 表1
使用数据工程构建科学计算大模型数据集 科学计算大模型支持接入的数据集类型 盘古科学计算大模型仅支持接入气象类数据集,该数据集格式要求请参见气象类数据集格式要求。 训练科学计算大模型训练数据要求所需数据量 构建科学计算大模型进行训练的数据要求见表1。 表1 科学计算大模型训练数据要求
数据工程介绍 数据工程介绍 数据工程是ModelArts Studio大模型开发平台(下文简称“平台”)为用户提供的一站式数据处理与管理功能,旨在通过系统化的数据获取、加工、发布等过程,确保数据能够高效、准确地为大模型的训练提供支持,帮助用户高效管理和处理数据,提升数据质量和处理效率
打造短视频营销文案创作助手 场景介绍 随着互联网的发展,短视频已成为了日常生活中不可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供一些基本信息
基于NL2JSON助力金融精细化运营 场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SFT